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ABSTRACT 

A general trend in the CMOS image sensor market is for increasing resolution (by having a larger number of pixels) 
while keeping a small form factor by shrinking photosite size. This article discusses the impact of this trend on some of 
the main attributes of image quality. The first example is image sharpness. A smaller pitch theoretically allows a larger 
limiting resolution which is derived from the Modulation Transfer Function (MTF). But recent sensor technologies 
(1.75µm, and soon 1.45µm) with typical aperture f/2.8 are clearly reaching the size of the diffraction blur spot. A second 
example is the impact on pixel light sensitivity and image sensor noise. For photonic noise, the Signal-to-Noise-Ratio 
(SNR) is typically a decreasing function of the resolution. To evaluate whether shrinking pixel size could be beneficial to 
the image quality, the tradeoff between spatial resolution and light sensitivity is examined by comparing the image 
information capacity of sensors with varying pixel size. A theoretical analysis that takes into consideration measured and 
predictive models of pixel performance degradation and improvement associated with CMOS imager technology scaling, 
is presented. This analysis is completed by a benchmarking of recent commercial sensors with different pixel 
technologies. 
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1. INTRODUCTION 

In response to growing consumer demand for higher resolution and more compact digital cameras in mobile phones, the 
pixels in CMOS image sensors have become smaller. This reduction of pixel size is being made possible by CMOS and 
micro-optics technologies scaling. Nowadays state-of-the-art imager design rules scale down into the sub-micron regime 
(i.e. 0.18µm - 0.09µm), and pixel size can be as small as 1.45µm × 1.45µm. Unfortunately, technology scaling has 
detrimental effects on pixel performance. Smaller pixels have worse light-gathering ability and more non-idealities. As a 
result, reducing pixel size and increasing pixel count (i.e. the number of pixels in the image) while keeping the size of an 
imaging sensor array fixed, does not always yield a better image quality.  
Spatial resolution and light sensitivity are two fundamental characteristics of image sensor that must be considered for 
characterizing and optimizing image quality. These characteristics are generally obtained from the Modulation Transfer 
Function (MTF) and the system Signal-to-Noise-Ratio (SNR). In Section 2 we describe the effects of technology scaling 
on a variety of pixel properties for conventional active pixel sensors (APS). To better understand how these parameters 
influence the measures of MTF and SNR, we show some simulations by using an extensive model of the performance of 
CMOS imager pixels from 5.2µm to 1.45µm. We will see that, even though changing pixel size clearly has opposing 
effects on MTF and SNR curves, it is difficult to examine the image quality tradeoff between spatial resolution and noise 
directly from these measurements. In Section 3 we introduce the notion of image information capacity for determining 
the optimal pixel size. Image information capacity quantifies the maximum visual information that a sensor could 
optimally convey from object to image, and is an objective measure of image quality. Our theoretical analysis is 
completed in Section 4 by the comparison of the image information capacity of commercial sensors using 2.8µm, 2.2µm 
and 1.75µm pixels. 

2. SENSOR PERFORMANCE 

2.1 Trends in Pixel Design 

Active Pixel Sensor (APS) is the most popular type of CMOS imager architectures. The APS pixels under consideration 
in this paper are: (i) the 4-T type pinned photodiode with Correlated-Double-Sampling (CDS); the 4-T pixel adds a 



 
 

 

 

transfer gate and a Floating Diffusion (FD) node to the reset, source follower, and row select (or read) transistors of the 
basic 3-T pixel; (ii ) the 2.5-T pixel, where the buffer of the 4-T design is shared between two adjacent pixels; (iii ) the 
1.75-T pixel architecture,1,13 in which four neighboring pixels share these same transistors; and (iv) the 1.5-T pixel,13 in 
which four pinned photodiodes share only reset and source follower transistors, the read transistor being removed. 
Sharing transistors improves the fill factor for the APS structure, and is a slight counterbalance to the photodiode process 
implants increase necessary for preserving the full well capacity (EFullWell in electrons) of a smaller photodiode area.  

2.2 Performance Measures and Modeling 

The Optical Efficiency (OE), which characterizes the photon-to-photon efficiency from the pixel surface to the 
photodetector, is affected as CMOS process technology scales to smaller planar feature size. The optical tunnel through 
which light must travel before reaching the photodetector becomes narrower, but its depth does not scale as much. The 
pixels’ angular response performance to incident light decreases because of longer focal length of the micro-lens that 
focuses the incoming light onto the photodiode.4 This phenomenon is also known as pixel vignetting. Experimental 
evidence2,3 and electromagnetic simulations5 using new tools based on Finite-Difference Time-Domain7  (FDTD) show 
that pixel vignetting becomes extremely severe as technology scales down, which results in significant OE reduction 
from about 35-40 percent for 3.2µm off-axis pixels to more than 75 percent for 1.45µm off-axis pixels (50 percent fill 
factor) with light incident at a 20° angle. The pixel aperture width and the structure of the interconnections stack are also 
critical limiting factors of photon collection inside pixels due to the dominant diffractive effect of light on sub-
wavelength scales and the spatial crosstalk arising from light propagation between adjacent pixels, respectively. 

The internal Quantum Efficiency (QE), which refers to the conversion efficiency from photons incident on the photo-
diode surface to photocurrent, is a function mainly of metallurgical process parameters (e.g. doping densities) and 
photodiode geometry. QE varies very little as photodiode dimensions shrink.2 It is important to note, however, that the 
pixel photo-response is not flat over the visible spectrum, and the internal QE actually shifts toward shorter wavelengths 
as junction depth gets shallower.8 

In addition to lower OE, and lower internal QE, smaller pixels cause higher photon shot noise (inherent to the stochastic 
nature of the incident photon flux, governed by Poisson statistics), and have higher leakage signals and more non-
uniformities. We follow A.E.Gamal9 et al. for describing the different temporal and spatial noise processes associated 
with these non-idealities and for modeling their impact on sensor Signal-to-Noise-Ratio (SNR) and Dynamic Range 
(DR). As a function of the photocurrent ES in electrons [e-], the SNR in decibels (dB) is 
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where   • PSignal is the input signal power. 

 • PNoise is the average input referred noise power. 

 • σs
2 (≈ Es) is the photon shot noise average power, which is signal dependent. 

 • σDC
2 (≈ EDC) is the power of the Dark Current (EDC) shot noise arising from the statistical variation (i.e. 

Poisson distribution) over time on the number of dark current generated electrons EDC.  

 • σREAD
2 (≈ σReset

2 + σReadout
2 + σFPN

2) is the read noise power; σRead combines (i) pixel reset circuit noise σReset, 
also known as kTC noise, (ii ) readout circuit noise σReadout due to thermal and flicker noise whose spectrum is 
inverse proportional to the frequency in MOS transistors, and (iii ) offset Fixed Pattern Noise (FPN) σFPN due to 
device mismatches; in the 4-T APS architecture, the major part of reset noise and FPN noise is eliminated by 
CDS, but this requires that the time between the two CDS sampling moments to be short enough to ensure the 
maximum correlation between the flicker noise components of the samples. 

 • σDSNU
2 is the Dark Signal Non Uniformity (DSNU) noise power; DSNU noise results from the fact that each 

pixel generates a slightly different amount of dark current under identical illumination. 

 • σPRNU
2 is the Photo Response Non Uniformity (PRNU) noise power; PRNU noise σPRNU, commonly known as 

gain FPN, describes the pixel-to-pixel gain variation across the image sensor array under uniform illumination; 
σPRNU (≈ KPRNU×Ēs)  is signal dependent and often expressed as a percentage KPRNU of the average image signal; 
it mainly affects sensor performance under high illumination. 



 
 

 

 

 • σQuantization
2 (≈ K2/12) is the quantization noise power that arises from the discrete nature of an n-bit analog-to-

digital conversion; the quantization noise is proportional to the sensor conversion gain K (≈ EFullWell / 2
n) in [e-] 

per digit number (DN). 

All of noise powers in Eq. (1) are measured in [e-]2. A classification between temporal and spatial noise sources 
distinguishes (i) photon shot noise, DC shot noise, reset noise, readout circuit noise, and quantization noise from (ii ) 
offset FPN noise, DCNU noise, and PRNU noise, respectively. Temporal noise and spatial noise also determines DR, 
which quantifies the sensor’s ability to detect a wide range of illumination in a scene. DR is expressed as the ratio of the 
largest non-saturating input signal EMax to the smallest detectable input signal EMin (i.e. noise floor under dark conditions) 
as follows 

DRdB = 
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DR decreases with full well capacity (and inevitably with pixel size) and as exposure time ∆t and/or temperature is/are 
increased. This is because dark current is a linear function of ∆t and is roughly doubling every 6°C (dark current 
performance measured for 3.2µm pitch 2.5-T pixel).2  

Spatial resolution is another critical aspect of image sensor performance. An image sensor performs spatial sampling of 
the input image projected by the lens onto its (rectangular) pixel array, i.e. the focal plane. Assuming an ideal thin lens, 
the focal plane would result in a perfectly sharp (digital) image. However, photosites are not infinitely small, which 
implies an intrinsic limit to spatial resolution described by Nyquist (uniform) sampling theory. Spatial resolution below 
the Nyquist spatial frequency (fN  ≈ (2×Pixel Pitch)-1 in line pairs or cycles per millimeter) to avoid aliasing and Moiré 
patterns is measured by the Modulation Transfer Function (MTF). The MTF is mathematically related to the Pixel 
Response Function (PRF) by calculating the magnitude of its Fourier Transform in a given direction. Several parameters 
degrade the detector MTF by causing low-pass filtering. The pixel active area geometrical shape (or pixel aperture area) 
with electronic crosstalk (i.e. photocarrier diffusion effect) and optical crosstalk are the main determining factors of the 
overall detector MTF.10 For sake of simplicity, a first-order approximation of sensor MTF is obtained by considering 
only the ideal geometrical PRF (i.e. uniform pixel sensitivity within the active area) convolved with an anisotropic 
(Gaussian or exponential-type) blur filter. The two-dimensional MTF for a traditional L-shaped pixel design is then 
given by  
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where  • wi (=2πfi) is the angular frequency in radians per pixel. 

 • A, B, a and b are the dimensions of the L-shaped active area, as described in Figure 1(a), with a ≤ A ≤ Pixel 
Pitch (P) and b ≤ B ≤ P. 

 • Gσ(w1, w2) is the frequency response of the Gaussian convolution kernel filter with standard deviation σ. 

Eq. (3) shows that the modeled MTF of an L-shaped pixel is symmetrical about the DC component, but it is not 
isotropic. This is illustrated in Figures 1(b-c). Note that the Nyquist frequency increases for small pixel size. The result is 
an improvement of detector MTF and higher spatial resolution. 

In summary, for a fixed sensor die size, smaller pixels theoretically allow a higher spatial resolution but have more non-
idealities and worse light sensitivity, and consequently lower DR and SNR performances. Some of the advances in image 
sensor technologies described above have made it possible to partially compensate for such noise performance 
degradation. In the next subsection we take into consideration both existing and predictive models of APS pixel 
performance associated with CMOS imager technology scaling to simulate detector MTF and SNR versus pixel size.  

 



 
 

 

 

 

                                (a)                                                                (b)                                                                 (c) 

Fig. 1. (a) Layout description of an L-shaped pixel design; (b) 2D MTF simulation for P = 3.2µm pixel size with the 
dimensions A = B ≈ P, a ≈ 0.55×P and b ≈ 0.28×P; this simulation assumes no crosstalk between pixels (σ = 0); (c) 
Same MTF with spatial frequency normalized to the Nyquist frequency fN = (2P)-1; in the general case where a ≠ b, 
note the anisotropy of the detector MTF. 

2.3 Simulations and Predictive Performance 

In our SNR simulations we first estimate the mean number of photons ηphotons incident on a single pixel (per exposure 
interval ∆t in seconds) as function of pixel size P and photometric exposure H (in lux.s), through the following equation: 

ηphotons (λ, ∆t) = 2
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where  • α is the pixel fill factor (0 < α ≤ 1). 

 • P2 is the pixel area (in m2). 

 • Km is the ratio between luminous flux and energetic flux; Km ≈ 683 lm/W for a wavelength λ = 555 nm.11 

 • Ephoton (= h v) is the energy of a photon (in Joules), equal to the product of Planck’s constant h and the optical 
frequency v; Ephoton ≈ 2.58.10-19 J for a wavelength λ = 555 nm. 

Assuming that the surface of object(s) in the scene (depicted by the camera system) is Lambertian, photometric exposure 
H can be described in a similar way to Cartrysse et al.12 by  
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where  • Tlens is the spectral transmittance of the lens (0 < Tlens ≤ 1). 

 • m (<0) is the magnification of the lens. 

 • f/# (= f / D) is the relative aperture (or f-number) of the imaging system, equal to the ratio of the focal length f 
to the circular aperture diameter D. 

 • R is the coefficient of reflection (0 <R ≤ 1). 

Figure 2(a) shows the mean number of photons per pixel for typical values of scene illuminance Escene, from 10 to 104 
lux, assuming that all photons in the visible range have roughly the same energy (estimation for λ = 555 nm). This 
estimation is obtained for ideal pixels (i.e. fill factor α = 1) with exposure time ∆t =100 ms, and for an f/2.8 lens with 
magnification m = -10-3 and transmittance Tlens = 0.85. 



 
 

 

 

         

                                                         (a)                                                                                        (b) 

Fig. 2. (a) Mean incident photon level per pixel for different pixel sizes and a photometric exposure range that covers low to 
high illuminance level conditions; (b) SNR as a function of photometric exposure for 10-bit image sensors with 
different pixel size.   

Based on this predicted number of photons per pixel and using Eq. (1) we simulate the sensor SNR for different pixel 
sizes. The simulation results are plotted in Figure 2(b) for a set of typical pixel parameters that are listed below in Table 
1. The pixel performance parameters are derived from Rhodes2 et al., Cohen13 et al. and Pain14. The contributions of read 
noise and DSNU noise are assumed negligible (e.g. σDSNU  ≤ 0.5‰× EDC). The comparative examination of these SNR 
plots confirms that SNR decreases with pixel size. For photometric exposure from 10-3 to 10-1 lux.s, photon shot noise is 
dominant and SNRs increase with photometric exposure at 10dB/decade. Within this photon-noise-limited region, the 
smallest pixel results in an SNR approximately 10dB lower than that of the largest pixel. At low signal levels, the slope 
difference between the SNR curves indicates that small pixels are also more sensitive to dark current than large ones. At 
high level signals, SNR curves flatten out when PRNU dominates. The dashed curves illustrate that peak SNR increases 
with integration time (until capacity-well saturation). In practice an upper limit on the integration time is dictated by how 
much loss of contrast information (cf. DR) and motion blur artifact can be tolerated in the captured image. 

Table 1. Set of typical pixel parameters used in our simulations; these data which are derived from Rhodes2 et al.*, Cohen13 
et al.**  and Pain14, include measured and predictive properties of (4T, 2.5T, 1.75T and 1.5T) APS pixels; sensitivity for 
the 1.45µm pixel (shown in italic) was obtained by creating an empirical model that takes into account OE reduction as 
discussed in Section 2.2.  

Pixel Pitch (µm) Full Well (ke-) Sensitivity (ke-/lux.s) Dark Current (e-/s) at  25ºC  /  60ºC PRNU (%) 
      5.2    (4T) 28 – 38* 57* 250 – 22* 2000* <1.05* 
      3.2    (2.5T) 22 – 33* 22* 65 – 12* 360* <1.05* 
      2.90  (2.5T) 19 – 25* 16* 30 – 10* 300* <1.05* 
      2.20  (2.5T) 12 – 21* 9.3* 25 – 9* 270* <1.5 
      1.75  (1.75T) 9 – 8**  5**  20 25**  <1.5**  
      1.45  (1.5T) 7– 4**  3 18 15**  <2.0 

 

We now compare sensor spatial resolution for different pixel sizes. Because, independently of the photosite geometrical 
shape, the amount of frequency response degradation due to pixel size increase is anisotropic, it can be plotted for one 
arbitrary direction without loss of generality. In Figure 3 the curved lines define the detector MTFs as a function of 
vertical input spatial frequency. The simulation results are again for ideal square pixels. As expected, for a fixed die size 
and a fixed imaging optics, sensors with (more) smaller pixels are capable of capturing higher spatial frequencies and are 
better at preserving thin details. In Figure 3 we also compare the influence of the detector on the overall MTF of the 
imaging system with that of a diffraction-limited lens operating at f/2.8. This comparison shows that the effect of 
diffraction of light becomes a limiting factor of the spatial resolution in image sensors with pixels smaller than 2.2µm.  



 
 

 

 

    

Fig. 3. Slice along the (y) vertical array direction of the imaging detector geometrical MTF with different pixel size (fill 
factor α = 1); the extra dashed curves show comparative MTFs along the same (y) direction for sensors with L-shaped 
pixels described in Figure 1 (fill factor α = constant ≈ 0.45×0.72); Diffraction MTF represents the frequency response 
expected from a perfect, diffraction-limited lens operating at f/2.8 (Diff. MTF ≈ 2/π × [arcos(f/f0) - (f/f0)×(1-(f/f0)

2)-1/2] 
with spatial cut-off frequency f0 ≈ (λ×f/#)-1). 

Our theoretical performance analysis of image sensors with varying pixel size shows an inherent difficulty in comparing 
the SNR and MTF curves to determine the optimal pixel size. The proposed metrics so far do not summarise to a scalar 
output which makes the tradeoffs between light sensitivity and spatial resolution still depend on many factors. Farrell15 et 
al. suggested comparing the pixel performance by (i) applying a psychological threshold for the SNR, referred to as 
MPE30, and (ii ) selecting the commonly used value MTF50 for the MTF. The MPE30 metric corresponds to the 
minimum required photometric exposure to render (uncorrelated) photon shot noise invisible in an image of uniform 
field, in other words such that SNR(H = MPE30) ≥ 30dB. The MTF50 metric is used to quantify the amount of perceived 
image blur. A tradeoff function is obtained by plotting MTF50 against 1/MPE30 for each of the simulated sensors. It 
turns out that this monotone decreasing tradeoff function is not sufficient to identify an obvious optimal pixel size. In the 
next section we use image information capacity as figure of merit of image sensors with varying pixel size.  

3. METHOLODY FOR QUANTIFYING IMAGE INFORMATION TRADEOFFS   

Following Farrell15 et al.’s approach, we can distinguish two different types of image distortions associated with the 
process of pixel size reduction. The first one is an increase of the amount of visible noise in the image. The other one is a 
decrease of the amount of image blur. These two phenomena of noise addition and image blurring are usually considered 
in terms of undesirable (spatial and temporal) variation in pixel intensity values and linear low-pass filtering in the 
spatial domain, respectively. However, an information theoretical viewpoint can be taken instead where the pertinent 
criterion for pixel size scaling optimization is the maximum image information capacity C (in bits) that the sensor could 
optimally convey. For instance, the limit of information capacity in a perfectly sharp, noise-free image (captured with an 
ideal imaging sensor) is simply the number of pixels of the sensor s multiplied by its quantization resolution b (number 
of bits per pixel). Note the analogy here with the Shannon formula16 for the transmission capacity of a discrete noiseless 
communication channel. 

C ≤ s × b.      (6) 

Let us first consider the noisy case in which a very thin grey level quantization may become irrelevant if it is much 
smaller than noise. The effects of the noise can be considered by substituting b into Eq. (6) by the number of bits b′ (≤ b) 
necessary to encode all the distinguishable grey levels. The information quantity b′ is also known as Tonal Range (TR = 
log2

-1(b′)) which characterizes the effective number of grey levels of the imaging system. Tonal range is computed 
through the Riemann integral 
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where σnoise ( = (σS
2 + σDC

2 + …)1/2 ) is the standard deviation of the overall noise of the image sensor. The interval of 
integration ∆H (= Hmax - Hmin) over photometric exposure H corresponds to the dynamic range of the sensor. 

Let now address the effects of image blurring on maximum image information capacity. Image blur can be interpreted as 
another (channel) constraint which increases statistical correlation among neighboring image points. We expect this 
constraint to specifically affect the available information transfer rate from object to image, i.e. the effective imaging 
spatial resolution of the sensor s′. By the reasoning17,18 which led Shannon16 to the theorem of entropy change in linear 
filters, we derive that the two-dimensional spatial resolution loss ∆s, for low-pass filter with characteristic OTF(w1,w2) = 
MTF(w1,w2)×e jφ(w1,w2), obeys 
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where fN1 and fN2 are Nyquist sampling frequencies in the horizontal and vertical directions (usually fN1 = fN2), 
MTF(w1,w2) has nonzero values over the image spectrum,  and ∆s (≤ 0) is expressed in bits. A traditional method for 
characterizing the MTF of an image sensor is to measure its spatial frequency response (SFR) to both slanted vertical and 
horizontal black and white edges (cf. ISO standard 12233). These measures are performed in the centre of the FOV, and 
vertical and horizontal SFRs are averaged to estimate the overall sensor MTF. Although inaccurate - we have 
demonstrated above that detector MTF can be anisotropic - this one-dimensional MTF gives often a good approximation 
of the sensor spatial resolution capability in all directions. Assuming that the two-dimensional MTF is now circularly 
symmetric, the domain of integration in Eq. (8) is also circular since there is no preferred direction of modulation. From 
the one-dimensional MTF measurement and simplification of Eq. (8), the two-dimensional spatial resolution loss (in 
bits) is approximated by  
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Finally, an upper limit estimate of the image information capacity is obtained by substituting s into Eq. (6) by the number 
of effective pixels s′ (= s × 2∆s). 

As an example of the information capacity limit for image sensors with different pixel sizes, consider the pixel 
parameters of Table-1 and MTFs plotted in Figure 3 (see previous section). Just as SNR in image sensors tends to 
increase as a function of their pixel size and exposure time, the same is true of TR. However, for pixels with same fill 
factor and active area of the same shape, (geometrical) MTFs with spatial frequency normalized to Nyquist frequency are 
similar. This means that the relative spatial resolution loss factor 2∆s is theoretically independent of pixel size. The image 
information capacity is essentially limited in this case by sensor resolution, TR and diffraction. In fact, given a constant 
optical format (e.g. 1/4-inch, corresponding to the diagonal dimension of the imaging area), the number of pixels is 
inversely proportional to the square of the pixel pitch, whereas TR is typically only about 1.3 bit higher when the pixel 
pitch is more than tripled from 1.45µm to 5.2µm. Consequently, the image information capacity of the sensor increases 
(for a fixed die size) as the pixel pitch decreases down to 1.45µm despite the effects of diffraction. Figure 3 illustrates 
this trend for pixels down to 1.45µm and a perfect (diffraction-limited) f/2.8 lens, and then extends the predictive model 
of image information capacity down to 1µm pixels by assuming that TR continues to decrease more or less linearly with 
pixel pitch at approximately 0.35 bit/µm (cf. dashed trend-line). Note that this is a reasonable assumption as long as the 
micro-lens has the ability to efficiently focus light onto the photodiode area. According to our prediction results, an 
optimal pixel size that maximizes the information capacity of the sensor is found for P ≈ 1.45µm. In other words, even 
under the assumption of ideal pixels with a higher OE than predicted by FDTD analysis, shrinking pixel size beyond this 
1.45µm limit will lead to reduced performance. 

In our theoretical analysis for quantifying image information tradeoffs between blur and noise, we have relied on a 
number of hypotheses and simplifications regarding the technological properties of pixels. In the next section, off-the-
shelf commercial image sensors with different pixel sizes are compared to validate our simulations and to determine 
whether existing pixels as small as 1.75µm pitch (or possibly smaller) can indeed lead to a higher image information 
capacity than larger pixels, or if the optimal pixel size has already been reached. 

 



 
 

 

 

 

Fig. 4. Image information capacity of the sensor as a function of pixel size for a fixed 1/4-inch imaging area and a perfect 
(diffraction-limited) f/2.8 lens; TR is given for a 8-bit equivalent grayscale. 

4. BENCHMARKING OF COMMERCIAL IMAGE SENSORS 

We present here the benchmarking of five commercial CMOS (color) image sensors produced by two of the world’s 
leading suppliers. We refer to these two suppliers as M1 and M2, respectively. Below in Table 2 is a brief description of 
the characteristics of the sensors. The pixel size varies between sensors from 1.75µm to 2.80µm. All of the noise and 
MTF measurements were conducted in RAW format using DxO Analyzer.19 Only the measure values for the green 
channel and for pixels at the center of the sensor array (i.e. on-optical-axis) are reported. To obtain accurate comparable 
measures of SNR and detector MTF, the sensors under test were mounted with identical lenses with known aperture and 
optical MTF. The performance of each lens was provided by TRIOPTICS measurements.20 The detector MTF was found 
by dividing the overall MTF of the resultant imaging system by the lens MTF. The effective exposure times of the 
sensors were determined by imaging an external LED-panel-based device where LEDs are successively illuminated for a 
defined time and can be counted in the picture taken.  

Table 2. Main characteristics of the sensors used for the benchmarking. 

Designation Manufacturer Pixel pitch (µm) Resolution (pixels) Optical format (inch) 
M2_2.80µm M2 2.80 1600 × 1200 1/3 
M2_2.20µm M2 2.20 2056 × 1544 1/3.2 
M1_2.20µm M1 2.20 2048 × 1536 1/3.2 
M2_1.75µm M2 1.75 2048 × 1536 1/4 
M1_1.75µm M1 1.75 2048 × 1536 1/4 

 
A SNR performance comparison of image sensors by manufacturer is displayed in Figure 5. For both manufacturers M1 
and M2, the SNR of the sensor with the largest pixel is the best as expected. The sensors of Manufacturer M2 perform 
differently depending on exposure time duration; this is in part due to the presence of a dark current compensation circuit 
that operates when the analog gain (to adjust the sensor sensitivity and conversion factor) is increased in low light 
conditions.  

It is important to note however the disparity in noise performance between image sensors with same pixel size but from 
different manufacturers, as shown in Figure 6. In this comparison, we included additional sensors from a third 
manufacturer M3. We also included older sensor versions from manufacturers M1 and M2 using 1.75µm and 2.2µm 
pixels (referred to as “bis”). The gap in SNR performance at mid-dynamic range between image sensors of the same 
generation can be as high as 5dB. 

 



 
 

 

 

 

Fig. 5. SNR comparison between image sensors of the same manufacturer but with different pixel sizes; SNR curves are 
plotted as a function of photometric exposure (in lux.s) and for different analog gains (i.e. varying exposure times); 
(Left) Manufacturer M1 and (Right) Manufacturer M2. 

 

Fig. 6. SNR comparison between image sensors with same pixel size but from different manufacturers; SNR curves are 
plotted as a function of photometric exposure (in lux.s) and for similar analog gains; (Left) 2.2µm pixel pitch and 
(Right) 1.75µm pixel pitch. 

Figure 7 displays the results of the MTF analysis for the five commercial image sensors under test. Both graphs in Figure 
7 present the same data. The detector MTFs plotted as a function of input spatial frequency (in lp/mm) on the left graph 
confirm that, for a given imaging area (e.g. 1/4-inch optical format) and imaging optics, MTF generally improves for 
image sensors with smaller pixels. The plots on the right are the same detector MTF curves than on the left but with 
spatial frequency normalized to the image domain. This time, for a fixed pixel count and field-of-view (i.e. variable focal 
length optics), the detector MTFs plotted as a function of image domain frequency (in cycles/image or cpi) indicate that a 
large pixel size results in a better MTF. For the sensors using 1.75µm and 2.2µm pixels and having nearly identical 
(vertical and horizontal) resolution, the detector MTFs on the right graph can also be interpreted as Nyquist normalized 
MTFs with fN located at f ≈ 1024 cpi. 



 
 

 

 

 

Fig. 7. Detector MTFs as a function of: (Left) input spatial frequency in line pairs per mm; and (Right) spatial frequency 
normalized to the image domain in cycles per image. 

We now calculate TR and the number of effective pixels s′ as discussed in the previous section. To allow sensor 
comparison, we must first make sure that TR values are computed at identical average photometric exposure H0. This is 
illustrated in Figure 8(a) for targeted H0 level of 0.4 lux.s. Figure 8(a) also shows that imagers with larger pixel sizes 
produce (across a wide range of targeted illuminations) images with a higher TR than image sensors with smaller pixels. 
Finally, the image information capacity results obtained for the five commercial image sensors - with varying pixel size 
and resolution - are compared in Figure 8(b). This graph shows that for a fixed imaging area, i.e. 1/4-inch optical format, 
the 2.20µm pixel sensor of each manufacturer is capable of capturing almost the same amount of visual information than 
its counterpart(s) using smaller pixels. It is interesting to note once again the difference in performance between sensors 
(with same pixel size) of different manufacturers. For instance, the relative difference in information capacity between 
M1_1.75µm and M2_1.75µm is found to be about 20%. Furthermore, when comparing sensors at full resolution, we see 
the clear advantage in information capacity of sensors using 2.20µm pixels. All of these observations indicate that using 
image sensors with pixel size smaller than 2.2µm (for increasing resolution) does not always yield a higher image 
information capacity and better image quality. 

       

                                                     (a)                                                                                         (b) 

Fig. 8. (a) TR plotted as a function of average photometric exposure; the measurement points correspond to different analog 
gain settings of each sensor; TR is computed for a 8-bit equivalent grayscale; (b) Image information capacity of the five 
commercial imagers described in Table 2; these imager capacities are calculated using the same diffraction-limited 
(f/2.8) lens model than in Figure 3. 



 
 

 

 

The above measurements suggest that it is very unlikely that shrinking the pixels down to 1.45µm will increase the image 
information capacity of the next generation of sensors. It seems indeed that the optimal compromise (in the sense of 
image information capacity) for a camera module with an ideal 1/4-inch lens operating at f/2.8 has already been achieved 
by sensors with a pixel size of 1.75µm. The discrepancy between the predicted value of 1.45µm for the optimal pixel size 
and the measurements is mainly explained by the fact that, for the commercial sensors under test, large pixels produce a 
better Nyquist normalized MTF response than small ones (our simulations assumed no increasing cross-talk between 
pixels as their size decreases). For that same reason and because of the rapidly decreasing TR (cf. OE loss problem) for 
pixel pitch below 1.75µm, halving pixel size and combining photodiode charges or digital values from four adjacent 
pixels, i.e. 2×2 pixel binning, will not allow an increase of image information capacity. 

5. SUMMARY AND CONCLUSION 

We reviewed the trends in pixel design for CMOS APS imagers. Despite the use of optimized semiconductor process, 
more advanced design rules and novel pixel architecture based on transistor sharing, the light sensitivity of pixels below 
3.2µm pitch decreases drastically with further pixel size reduction due not only to lower pixel aperture but also more 
severe pixel vignetting and increasing spatial cross-talk. Therefore, when shrinking pixels beyond this limit, it becomes 
necessary to examine the importance of tradeoffs between spatial resolution and noise. MTF and SNR can be used as 
indicators of image quality. A simplified model of the effect of pixel size on sensor MTF and SNR was described to 
simulate and discuss the theoretical performance of pixels from 5.2µm down to 1.45µm. For selecting the optimal pixel 
size, we designed a metric that characterizes the visual information transfer capacity (from object to digital image) of the 
sensor. This metric which is defined as the product of the effective spatial resolution of the image detector by its tonal 
range, takes both MTF and SNR measurements into account. A theoretical maximum of image information capacity was 
found for a pixel pitch of 1.45µm, in the approximation that the pixel optics has the ability to efficiently focus the 
incoming light onto the photodiode area (with negligible cross-talk). Finally, this metric was used as a figure of merit to 
benchmark five low-end commercial image sensors typically designed for camera-phone applications (to be used in 
combination with an f/2.8 lens). Our experimental results showed a significant disparity in performance between sensors 
coming from different manufacturers. In general, for a fixed die size, the advantage of commercial 1.75µm pixel sensors 
over 2.20µm pixel sensors can be very small. With regards to information capacity, this implies that an optimum has 
already been reached by sensors using 1.75µm pixels, e.g. a 1/4-inch camera phone sensor with 3.2 megapixel resolution. 
In spite of the advances in CMOS pixel technology and design promised by the manufacturers of image sensors, it will 
become difficult to scale pixel size down to 1.45µm without significant degradation in image quality. In future work, we 
will perform subjective experiments to quantify the relationship between image information capacity and the preferences 
of a human observer between image sharpness and image noise visibility to maintain perceptual image quality. Our 
comparative analysis of image information capacity needs also be extended to colour image quality. This extension 
requires to determine the number of colours that a sensor can distinguish, up to noise, which can be performed by 
evaluating colour sensitivity21 instead of tonal range. 
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