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ABSTRACT
Noise is an important factor in image quality. We analyze
it in images produced by digital cameras. We show that,
beyond the usual standard deviation measurement, spatial
correlations also convey interesting information which al-
lows to (i) better describe the perception of the noise, (ii)
analyze an unknown imaging chain. Indeed, knowledge of
these spatial correlations isnecessary to predict the noise
after the rescaling and sampling involved in a realistic imag-
ing chains.

1. INTRODUCTION
Noise is a crucial aspect of image quality. It is often mea-
sured by the standard deviation of the intensity level with
respect to a true image (often a uniform patch, sometimes
an edge or an oscillation). Standard practice are described
in [6]. However a satisfactory characterization is still un-
available and therefore ”the subject of ongoing research” as
stated in the same document. This work is a contribution to
this endeavor.

This usual measure of noise has a major drawback that
knowing it at a given resolution does not allow a prediction
of its level at other resolutions. We show that this standard
framework must be supplemented by thecorrelation func-
tion of the noise if one is to be able to predict noise after
the various treatments occurring in imaging chains before
the actual printing or viewing of the image. We show how
this function can be estimated. The correlation function in
turn gives rise to a natural notion of noise size which we
illustrate with natural images.

A perhaps unexpected application of the correlation func-
tion is the analysis of image processing occurring inside
cameras. We give some real-life examples of this and an
application showing how, because of these spatial correla-
tions, it is a camera withhigher standard deviation noise
level that produces better prints. Finally we discuss how
noise and blur (using our blur measure introduced in [4])
are balanced and use derived noise measures to optimize
some image processing algorithms.
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2. A SIMPLE MODEL FOR NOISE IN DIGITAL
CAMERAS

We assume that each (sensor) site is affected by an addi-
tive noise and that noises at different sites are independent
on one another and on the ”true” (or ideal) signal.1 We do
not assume that the law of the noise at a given site has a
particular form (like Gaussian for thermal noise, or Pois-
sonian for counting noise —see [2]). We furthermore as-
sume that subsequent stages arelinear and translation in-
variant (these stages include transfer of the charges within
the CCD array, demoisacing, sharpening, etc.). Therefore
the image produced by the camera is given by the convo-
lution: u = (u0 + n0) ∗ K whereu0 is the ideal image
at sensor level,n0, the noise, is a random field with i.i.d.
values at each site. The observed noise isn := n0 ∗K.

Following standard practice, we shall call the standard
deviation of the noise signal

〈
n(0)2

〉
the noise level. It is

easy to compute this quantity from the kernelK:

〈
n(0)2

〉
=

〈∫
n0(x)K(−x) dx

∫
n0(y)K(−y) dy

〉
=∫

〈n0(x)n0(y)〉K(−x)K(−y) dxdy = σ2
0

∫
K(x)2 dx

using〈n0(x)n0(y)〉 = σ2
0δ(x − y). Thus it isσ2

0‖K‖2
L2 ,

‖K‖L2 being theL2 norm of the kernel.

An important consequence of this formula is how the
noise level behaves under convolutions. Under a convolu-
tion by some kernelL, the standard deviation of noise be-
comes‖K ∗L‖L2 = ‖K̂ · L̂‖L2 using that the Fourier trans-
form preservesL2 norm and that that it maps convolutions
into products. This formula implies that to predict the level
of noise after an arbitrary convolution, one needs a complete
knowledge of|K̂(ω)| for all ω ∈ [0,∞)2, i.e., one needs to
know this kernel.

1This assumption means in particular that we assume the gain of the
sensors to be fixed.



3. CONVOLUTION KERNEL AND CORRELATION
FUNCTION

Motivated by the previous remark, we introduce a way of
recovering the kernelK from an image produced by the
camera. The key tool is thecorrelation function :

corK(x) := 〈n(0)n(x)〉

Let us compute it from the kernelK:

corK(x) =
∫
〈n0(0− v)n0(x− w)〉K(v)K(w) dvdw

= σ2
0

∫
K(w − x)K(w)dw = σ2

0K̃ ∗K(x)

whereK̃(x) = K(−x). At the level of Fourier transforms,

ĉorK(ω) = σ2
0 |K̂|2(ω)

This implies:

Proposition 1 Assume that the kernelK is real, symmetric
(K(x, y) = −K(−x, y) = −K(x,−y)), positive at0 and
real analytic. ThenK̂(ω) =

√
corK(ω)/σ0.

Thus, one can reconstruct the kernelK describing the
inner workings of the camera from the correlation function
corK . This function is a well-known object in probability
theory. It captures many of the spatial properties of ran-
dom fields such asn. Indeed, in the special but fundamental
Markov case, the probability law is completely determined
by its correlation function [8].

4. ESTIMATING THE CORRELATION FUNCTION
We have reduced the determination of the kernelK to esti-
mating the correlation functioncorw. We present a scheme
for doing this from an image containing an almost uniform
zone. We are going to estimate the correlation function
on a windowW of (2W + 1) × (2W + 1) pixels. The
ideal value of the image at some(x, y) will be estimated
by the average:̄u(x) = (#A)−1

∑
y∈A u(x + y) where

A = WZ2 ∩ ([−SW, SW ]2 \W). The proposed estimator
is:

cW,S,N (k, `) =
1

N2

∑
i,j=1,...,N

(u(iW, jW )−ū(iW, jW ))×

× (u(iW + k, jW + `)− ū(iW, jW ))

LetE = (#A)−1
∑

x∈A u11x
2
1+u22x

2
2, Q(x) = u11x

2
1+

u12x1x2 + u22x
2
2 and

∆̄ = N−2
∑

i,j=1,...,N

(u1+2iWu11+jWu12, u2+2jWu22+iWu12).

A tedious but straightforward computation yields:

Fig. 1. Correlation function of the 11 megapixels Canon
EOS 1DS at ISO 800 around grey level 128.

Lemma 1 The expected value ofcW,S,N (x) is:

corK(x) +
σ2

0

(2K + 1)2 − 9
− 2E(Q(x) + x · ∆̄) + E2.

In particular, an unbiased estimator forσ2
0 = corK(0) is:(

1− 1
(2K + 1)2 − 10

)
(cW,S,N (0)− E2).

The variance of these estimators areO(1/N2).

We shall assume that due to small but unavoidable errors
in the uniformity of lightning, the deterministic image is
quadratic:

u(x) = u∗ + u1x1 + u2x2 + u11x
2
1 + u12x1x2 + u22x

2
2

We note that typical values given by a 5% vignetting from a
200 grey level across 500 pixels areu11, u12, u22 ≈ 4·10−5.
AssumingN = 100, W = 5 andS = 5, the unestimated
term above,2E(Q(x) + ∆̄ · x)− E2, is about10−3 which
can be neglected by comparison with the root mean square
error of the order of1/N = 10−2. These estimates are com-
patible with the variability of measures actually performed
by us.

5. FIRST APPLICATIONS
5.1. Analysis of cameras
We present the estimated correlation functions for two cam-
eras in Figures 1-2. We observe the different shapes: circu-
lar and very peaked for the Canon EOS 1DS, more spread
out and elongated in one direction for the other camera.
A possible interpretation for this elongation is the leakage
which can occur in the so called CCD-controller of these
CMOS sensors.



Fig. 2. Correlation function of the 8 megapixels Canon 1D
Mark II at ISO 800 around grey level 128.

Fig. 3. A natural image with gaussian noise satisfyingσ2 ≈
77 andρ2 = 1 (left) or 8 (right).

5.2. Noise perception, standard deviation and spot size
We have performed a series of experiments to illustrate the
roles of both the level of noiseσ =

〈
n(0)2

〉
and the spread

of the kernelρ2 (ρ2 =
∫

x2K(x) dx/
∫

K(x) dx). See fig-
ures 3-4 which illustrate a same natural image to which has
been added distinct gaussian noises with gaussian kernels.
One sees that bothσ2 andρ2 are relevant to the perception
of noise. The analysis of correlations between color chan-
nels can also be performed using a independent component
analysis [5, 7] can be performed and will be presented else-
where.

6. TRANSFORMATION OF NOISE IN IMAGING
CHAINS

A zoom involves: a rescaling, an interpolation and a resam-
pling (for a zoom-out the interpolation is more usually seen
as an averaging but this is the same mathematically). The
resampling has a trivial effect on the correlation function

Fig. 4. A natural image with gaussian noise satisfyingσ2 ≈
167 andρ2 = 1 (left) or 8 (right).

(one just forgets its values outside of the designated lattice).
A scaling by a factorλ (expansion of the size of the image
by λ) just replaces the correlation function bycorK(λ−1x).
The interesting part involves the interpolation. Assuming
that it is linear, it is just a convolution with some kernelL.
Thus, the zoom maps the imageu to (L ∗ u)(λ−1·). The
noise level changes from‖K‖2

L2 to ‖(K ∗ L)(λ−1·)‖2
L2 . In

general one cannot simplify this expression and computa-
tion of the new noise level requires the numerical evaluation
of the underlying integrals.

To give a feeling for what is happening, let us consider
the case whereL andK are both Gaussian withK = σ0

πρ2 e−x2/(2ρ2)

andL = 1
2π∆2 e−x2/(2∆2). ThenL∗K = σ0

2π(ρ2+∆2)e
−x2/2(ρ2+∆2).

Therefore the level of noise after the zoom becomes:

ρ2

ρ2 + ∆2
σ2

0

That is, the averaging over a scale∆ larger than the typi-
cal correlation lengthρ reduces the noise level, as could be
expected.

Imagine now that one wants to produce10×15cm print
from the two cameras depicted in figures 1 and 2. A straight-
forward computation shows that in the first case, one will
get a noise ofσ2 ≈ 0.2. In the second case, one will get
σ2 ≈ 0.5. Thus, even if initialσ2 is higher for the first cam-
era, as the noise is almost completely uncorrelated, it will
decrease quickly as the image is zoomed out to produce the
print. This illustrates the practical importance of the spatial
correlations.

7. NOISE AND BLUR
Usually, improvement in sharpness comes at the price of in-
creased noise and vice-versa. However this is not a general
fact as the following computation shows. We use theblur
measurecalledBxU developed in [4]. Under a convolution
byK, this measure increases byvar(K) =

∫
K(x)x2 dx/

∫
K(x) dx.

We start with a discrete imageu with impulsional noise
σ2

0 and make a convolution with the discrete kernel:



Fig. 5. A natural image and its “optimized” version.

K =

c b c
b a b
c b c


with a, b, c, some real numbers to be determined. The

blur is increased byvar(K) = 4b + 8c. The noise level is
multiplied by‖K‖2

L2 = a2 + 4b2 + 4c2.
Now, we can for example chose a normalizedK so that

it does not increase blur and yet decreases noise level: min-
imizea2 + 4b2 + 4c2 under the conditions4b + 8c = 0 and
a + 4b + 4c = 1. We obtain:−1/9 2/9 −1/9

2/9 5/9 2/9
−1/9 2/9 −1/9


which nearly halves the noise (it multiplies it by5/9).

The resulting image shows that such an operation (iterated
four times) in fact createstexturethrough its complicated
kernel. This is again an illustration of the importance of the
correlation function beyond the usual noise levelσ2.

8. CONCLUSION
We have examined the standard measure of noise as the
standard deviation of the difference to the ideal image. We

have shown how ana priori uncorrelated noise at the sensor
level in a digital camera acquires a non-trivialcorrelation
function. This correlation function is necessary to estimate
the noise level after further the image processing usually
necessary to produce the desired prints or displays (where
considering only the standard deviation can be grossly mis-
leading). We have shown how to obtain this function from
measurement on images produced by the camera. Experi-
ments have further demonstrated the information gained on
the inner workings of these cameras as well as the relevance
of the correlation function to the perception of noise. Noises
with the same standard deviation measure can be perceptu-
ally different if they have differing correlation functions. Fi-
nally we have shown how one can both lower blur and noise
– the price, texturing, only showing up in the correlation
function and not in the standard noise level.
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