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ABSTRACT

After discussing usual approaches to measuring blur of op-
tical chains, we show theoretically that there is essentially
a unique way to quantify blur by a single number. It is the
second derivative at the origin of the Fourier transform of
the kernel. This somewhat surprisingly implies that blur is
especially sensitive to attenuation of thelow frequencies.
The blur measure is in fact the quadratic size of the spot di-
agram. A series of experiments show that this measure is
correlated to perceptual blur. We verify that the blur mea-
sure behaves as expected with respect to the standard ”blur”
and ”sharpen” tools of usual image processing tools. We ap-
ply the measure to assess quality of cameras, natural images
and image processings.

Keywords: Image analysis, image quality, blur, unique-
ness.

1. INTRODUCTION

The blurring produced by an imaging chain, be it a cam-
era, a screen or an image processing algorithm, is a key
component of its quality. We note that perceptual blur is
a loosely defined concept (which may cover multiple and
complicated psychophysical phenomena) which has been
studied before mainly as “the effect of a Gaussian filter”
(see, e.g., [2, 14, 27]). In this paper we ask a different
question. We look for a way to quantify (non-necessarily
Gaussian) “bluriness” as it is produced by various imaging
chains (i) by a single number so that one can compare imag-
ing chains; which is (ii) correlated to the perceived level of
blur; (iii) can be composed in the sense that concatenating
imaging chains results in a blur which a function of the blurs
of the imaging chains, e.g., the blur of a camera should be a
function of the blur of its optics, its sensor and the following
processing. We note that this work does not deal with the
blur of imagesper se(see [9] and the references therein).
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In the spirit of the approach of [1] to scale-space PDE
(see [11, 12, 29]), we derive mathematically a unique solu-
tion to this problem and then study how it relates to percep-
tion and apply it to imaging problems.

Blur is often measured in the two following way. The
first one is theModulation Transfer Function or MTF
(see, e.g., [22]):

MTF(ω) =
∫
|f̂0(ω cos θ, ω sin θ)| dθ∫
|f̂(ω cos θ, ω sin θ)| dθ

wheref̂0 is the Fourier transform of the true image andf̂ is
that of the observed image. A perfect imaging chain would
haveMTF(ω) ≡ 1, but real imaging chains attenuate high
frequencies so thatMTF(ω) → 0 asω → ∞. Figure 1
shows a typical MTF. The MTF can be evaluated by mea-
suring the response to a black-on-white edge, like the ones
found in the ISO 12233 test chart [21].

The MTF seems to contain all the relevant information
(it forgets the possible non-isotropy of the imaging chain
and the phase of the underlying kernel —see below). Also,
the MTF of a concatenation of chains is the product of their
MTFs. However it is a whole function where one would like
a single number and it contains lots of information irrelevant
to blur.

Remark.Thespot diagram is the image of an ideal point.
A perfect optical chain would reproduce a single point. A
real one gives a spot which can have a variety of shape, size
and colors. The spot diagram is ideally the image of the
underlying kernel. Such diagrams are much used in optics
[22]. As they are theoretically very close to MTFs, the same
comments apply to them.

It is a common practice to try to extract a representative
number from the MTF. This is done by looking at its val-
ues at some definite frequencies (for instance Canon1, resp.
Olympus2, recommends using the value of the MTF at 30
lp/mm, resp. 60 lp/mm, on the 24x36mm film to assess

1See the glossary athttp://consumer.usa.canon.com .
2See the MTF charts athttp://www.olympus-pro.com .



the “sharpness”, whereas the value at 10 lp/mm, resp. 20
lp/mm, should give the “contrast capability”). There is an
obvious arbitrariness involved in these choices.

There are other ways to extract a number: taking the
area under the MTF curve or looking at the frequency where
the MTF drops below some high treshold, e.g. 75%.

Another related number is thelimiting resolution (see,
e.g., [22]). It is the size of the smallest visible details or, in
other terms, the highest spatial frequency visible in the pro-
duced image. It can be measured from the MTF by declar-
ing it to be the frequency where the MTF falls below a low
threshold like 5%.

In these ways, one obtains numbers with a clear mean-
ing. However, knowing such numbers for different optical
chains does not allow one to predict the corresponding num-
bers for their concatenation (which can describe the zoom-
ing or printing required to actually use the images).

There is therefore a need for a better way to quantify
blur with respect to the evaluation of imaging chain quality.
To provide an answer we axiomatize the problem to analyze
it mathematically: an imaging chain is given by its kernelK
and the corresponding blurB(K) satisfies:

• the blur of a Gaussian kernel is non-zero;

• the blur of a concatenation of optical chains is a func-
tion of the blur of each of the chains (and does not
depend on any other characteristics of these chains);

• the blur is not affected by displacements within the
plane of the image: ifI is an isometry of the plane,
thenB(K ◦ I) = B(K) for any kernelK;

• the blur observed from a distanced′ is a function of
the blur at a distanced and the ratiod′/d.

(A precise statement of these axioms and a more detailed
discussion is given in Section 3). For now, let us comment
the last axiom. It is clear that the perceived blur of an im-
age, say a given print, depends on the distance at which it is
observed. The axiom requires that there exists a functionF

Fig. 1. A typical MTF is close to1 for ω ≈ 0 and then falls
off rapidly.

Fig. 2. MTF’s differing only for largeω.

Fig. 3. Same perceptual blur with different limiting resolu-
tions.

Fig. 4. Different perceptual blurrings with the same limiting
resolution (ISO-12233 chart, detail).



such that the blur observed at the distanced′ is F (d/d′, b)
whereb is the blur as observed at the distanced.

We obtain the following result (stated more precisely in
section 3):

Theorem 1 Any blur measure with the properties above can
be written asΨ(B(K)) whereK is the normalized kernel of
the imaging chain,Ψ : [0,∞) → [0,∞) is a fixed, increas-
ing diffeomorphism and

B(K) = −1
2

tr
∂2 log K̂
∂x2

(0, 0)

whereK̂ is the Fourier transform of the kernel of the opti-
cal chain andtr is the trace. Moreover,B is the only blur
measure which has the following additional properties:

• it is additive:B(K ∗ L) = B(K) + B(L);

• it is 1 for the Gaussian kernel with variance1.

For a Gaussian kernelK(x, y) = (2πσ)−1e−(x2+y2)/2σ2
,

B(K) is simply its usual parameterσ2, as one could expect.
This shows in what sense Gaussian blur can represent ar-
bitrary blur as it is often assumed in the literature. More
interestingly, this formula gives, for arbitrary kernels, the
relevant generalization of the parameterσ2.

Remark that the blur measure is therefore determined by
the behavior of the kernel at vanishing frequencies: contrar-
ily to a widespread belief (see, e.g., [19, 17]), blur is not
primarily related to high frequency attenuation or low pass
filters

We can already make a few comments. Firstly, it is well-
known that the contrast sensitivity of the human visual sys-
tem is rather low at high frequencies, hence it is perhaps
not so surprising that these do not play such a big role in
the overall quality of an image. Secondly, as Figures 2-4
show, one can have MTFs with the same behavior at high
frequencies (in particular the same limiting resolutions) and
yet very different perceptual levels of blur and conversely.
Thirdly, this derivative in the Fourier domain has a simple
interpretation in space and one can reformulate the previous
theorem as:

Theorem 2 The above blur measure for an optical chain
given by a normalized kernelK is

B(K) =
1
2

∫
R2

(x2 + y2)K(x, y) dxdy.

In particular, it is obviously related to the size of the spot
diagram which is very natural.

The proof of these results is given in Section 4. We ap-
ply various kernels to confirm that low frequencies indeed
play the dominant role in the perception of blur (section 5).

We show that this mathematically defined measure is re-
lated to perception by a psychophysical experiment (section
6) which confirms the view of practitioners (mass retailers,
journalists) which have adopted this measure. Then we ex-
plain how these mathematical results can be used, giving a
detailed example of the assessment of cameras with given
optics, print format and viewing conditions (section 7). We
finally present two applications to digital image processing:
we evaluate a family of linear zooms and we show howboth
blur and noisecan be reduced at the price of “texturing”
(section 8) before concluding.

A short version of this work was presented at [6].

2. AXIOMATICS OF BLUR MEASURES

2.1. Imaging chains and convolutions

An imaging chain is some collection of devices which takes
on input an image (assumed to be some positive function
on the plane) and outputs another image. We assume the
imaging chains in this paper to be:

(1) positive;

(2) linear;

(3) translation invariant;

(4) L1 norm preserving.

These assumptions can be justified as follows.
(1) Images are nonnegative functions, so imaging chains

map nonnegative functions to nonnegative functions: this is
the definition of positivity.

(2) Optical devices are certainly linear. Films or CCD
detectors are often non-linear in theory but one usually tries
to use them in their linear regimes.

(3) The situation with respect to translation invariance is
similar: it rarely holds perfectly (for instance there is often
vignetting), but one usually strives to approach it.

(4) TheL1 norm is the integral of the intensity and there-
fore the physical energy [4]. By this normalization we make
the measure independent of global gain3.

Properties (2)-(4) are well-known [5, p. 72] to imply
that imaging chains correspond to convolutions, i.e., imag-
ing chains correspond mathematically to the following op-
erations on imagesf :

f 7→ K ∗ f

with a kernelK which is aL1 nonnegative function over the
plane. Notice thatK is essentially the spot diagram in terms

3Such a global gain may well have a perceptual impact but this is not
the subject of this paper.



of optics. The energy normalization is obtained by dividing
K by itsL1 norm.

The transform of a point through an imaging chain is ex-
pected to have essentially a finite size. Thus we can assume
that the kernel has finite moments of all orders.

We also assume for convenience the normalizations:∫
xK dxdy =

∫
yK dxdy = 0 (1)

These conditions can be ensured just by translating the ker-
nelK.

We letK be the set of kernels, i.e. all nonnegative,L1

functions, with finite second order moments and satisfying
the normalization (1).

We denote the Gaussian kernels by

Gσ2
xx,σ2

yy
(x, y) :=

1
2πσxxσyy

e−x2/2σ2
xx−y2/2σ2

yy

and simplifyGσ2,σ2 toGσ2 .

2.2. Blur measures

We formalize the axiomatics given informally in Section 1.
Let us stress that, at this point, we are looking for auseful
quantification of blur, not a psychophysical model of human
perception. We shall discuss later evidence of a correlation.

2.2.1. Additivity

The main requirement on blur measure is that the blur of a
concatenation of imaging chains is the “composition” of the
blurs of the imaging chains in the following sense. There is
a continuous group law◦ on an intervalI ⊂ R such that

B(K ∗ L) = B(K) ◦ B(L)

But this readily implies that there is a diffeomorphismΨ :
I → R such thatΨ(x◦y) = x+y. Hence, up to the change
of coordinatesΨ, the composition property implies that the
measure is additive.

2.2.2. Rescaling

The second requirement is the covariance w.r.t. change of
scale or distance of observation: there is a continuous(z, b) 7→
Fz(b) such that, ifz is some zooming factor, thenB(Kz) =
Fz(B(K)), whereKz(x, y) = z2K(zx).

Observe first that, asKz ∗ Lz = (K ∗ L)z, we must
have:

B((K∗n)z) = Fz(nB(K)) = nFz(B(K))

Thus,Fz(rb) = rFz(b) whenr > 0 is, first, integer, then
rational and finally an arbitrary real (using the continuity of
F ). ThereforeFz(b) = φ(z)b for some realφ(z).

Now, B(Kzz′
) = B((Kz)z′

) givesFz′ ◦ Fz = Fzz′ so
that:

φ(zz′) = φ(z)φ(z′).

But this implies thatφ(z) = zλ for some fixed numberλ.
Thus we have shown that:

B(Kz) = zλB(K).

We can interpret this as saying that a change of length unit
(in K) gives a simple change of blur unit (inB(K)).

2.2.3. Continuity

Recall that the Schwartz spaceS [23] is the set ofC∞ real
functions overR2 satisfying:

∀p ≥ 0 ∀α ‖f‖p,α := sup
x∈R2

|x|p
∣∣∣∣∂|α|f∂xα

∣∣∣∣ <∞

whereα ranges over nonnegative multi-indices(α1, α2) and
|x| is the Euclidean norm ofx. The Schwartz topology is
given by:

fn → f in S iff for every p, α, ‖fn − f‖p,α → 0.

LetK′ be a subset ofK ∩ S endowed with some topol-
ogy. K′ is admissibleif it contains all Gaussian kernels, if
it is stable under convolution:

f, g ∈ K′ =⇒ f ∗ g ∈ K′

and if its topology is weaker than that ofS:

fn → f in S =⇒ fn → f in K′

2.3. Axioms

We are now ready to state the axioms that we require of a
blur measure, which are either the formalization of proper-
ties given in Section 1, a consequence of them, or an irrele-
vant normalization.

(i) Normalization: B(G1) = 1;
(ii) Additivity: for all f, g ∈ K,

B(f ∗ g) = B(f) + B(g);
(iii) Invariance: if H is an isometry of the plane,

B(f ◦H) = B(f);
(iv) Scaling: there is a positive functionφ such that

for eachf ∈ K, λ > 0:
B(fλ) = φ(λ)B(f)

wherefλ(x, y) := λf(λx, λy);
(v) Stability: B : K′ → R is continuous.

Definition 1 If B : K′ → R satisfies properties (i), (ii), (iii),
(iv) and (v) then we say thatB is anadditive blur measure.

Observe that property (i) is a trivial normalization.



3. MAIN RESULT

Our main result is the following uniqueness statement:

Theorem 3 LetK′ be an admissible subset of the Schwartz
spaceS. Define forf ∈ K′,

σ2
x(f) =

∫
R2
x2f(x, y) dxdy

and defineσ2
y(f) likewise.

There is a uniqueadditiveblur measure. It is given by:

B(f) =
1
2
(
σ2

x(f) + σ2
y(f)

)
if this is a continuous functional overK′. Otherwise there
is no blur measure.

We remark that the above theorem is valid in a wide
range of reasonable topologies so it is not tied to a delicate
technical choice.

We also observe that there there is no blur measure in
anyLp topology for anyp. The weakest admissible topol-
ogy is of course given by the norm:

|f | :=
∫

R2
(x2 + y2)|f(x, y)| dxdy

on the obvious Banach space.
Let us stress that the blur measure is defined essentially

by its scalar nature (it is a single number) and its invariance
(or composition) properties. The only essential assumption
which is explicitely related to the usual notions of blur is
that the blur of a Gaussian kernel is non-zero.

4. PROOF OF THE MAIN RESULT

This section is devoted to the proof of the Main Theorem
above but let us say before a few words about the ideas in-
volved.

Intuitively, the requirement thatB(K) be isotropic and
additive essentially says thatB is a linear function of the
logarithm of the MTF. This dependence, because of the scale
invariance, must be restricted to the zero frequency. The ad-
ditivity finally implies that it is (proportional to) the vari-
ance.

Technically, we have the necessary continuity properties
so that we can start from the Gaussian kernels and general-
ize to arbitrary kernel through a lemma which is just the
usual proof of the central limit theorem of Probability The-
ory.

4.1. Blur measures for gaussian kernels

The additivity property (ii) together withGα2 ∗ Gβ2 =
Gα2+β2 implies that

B(Gnt) = nB(Gt).

t 7→ B(Gt) being continuous inS and therefore inK, this
is well-known to imply thatB(Gt) = c · t for some constant
c. The normalization (i) implies thatc = 1. Thus,

B(Gσ2) = σ2

By invariance (iii)B(Gα2/2,β2/2) = B(Gβ2/2,α2/2), hence
using the additivity (ii’):

B(Gα2,β2) = B(Gα2/2,β2/2 ∗Gα2/2,β2/2)
= B(Gα2/2,β2/2) + B(Gα2/2,β2/2)
= B(Gα2/2,β2/2) + B(Gβ2/2,α2/2)
= B(Gα2/2,β2/2 ∗Gβ2/2,α2/2)
= B(G(α2+β2)/2).

Finally, we see that for an additive blur measure one must
have:

B(Gα2,β2) =
1
2
(α2 + β2), (2)

i.e., ρ̄(t) = 1 for all t in the previous result (??).

4.2. Reduction of the general case to Gaussian kernels

In this sectionB is an arbitrary additive blur measure. We
are going to show thatB(f) = B(Gα2,β2) whereα2 =
σ2

x(f), β2 = σ2
y(f).

Let f̂ = TF(f) be the Fourier transform of an image

f ∈ K. Observe that−∂2f̂
∂x2 (0, 0) =

∫∫
x2f(x, y) dxdy and

similarly for the other second order derivatives. Note that
the centering of the kernel implies that∂2f̂/∂x∂y(0, 0) =
0. Let B̂(f̂) = B(TF−1(f̂)).

The scaling property gives:

B̂(f̂n1/2) =
1
n
B̂(f̂). (3)

As f̂ .ĝ = f̂ ∗ g, the additivity property (i) gives, for any
integern ≥ 0, B̂(f̂n) = nB̂(f̂). Together with (3), this
gives:

B̂(f̂) = B̂
((
f̂n1/2

)n)
.

Claim. Settingĝ(ωx, ωy) = e−α2ω2
x/2−β2ω2

y/2, we have, for
all integersp ≥ 0 and multi-indexα,

‖(f̂n1/2)n − ĝ‖p,α → 0 as n→∞.

This will show thatf∗n
n1/2 → g in S, hence inK′ whose

topology is assumed weaker.



Remark.The proof of this claim will be essentially that of
the Central Limit Theorem [24].

Before proving the claim, note that it implies the theo-
rem. Indeed, the continuity ofB inK′ impliesB(f) = B(g)
and the conclusions of the theorem follow from the previous
analysis of the blur measures for Gaussian kernels.

The first step in the proof of the claim is to observe that

F̂n(x, y) := f̂n1/2(x, y)n = f̂(x/n1/2, y/n1/2)n.

Write

∆t := {x ∈ R2 : |x| ≤ tn1/2}.

and letε > 0 be arbitrarily small.
Recall that the semi-norm that we have to bound is:

sup |x|p|∂α(F̂n − ĝ)|.

Let 0 < s < 1/2 be a parameter to be specified latter.

Bound over∆δn1/2∆δns

An easy induction shows that therth derivative ofF̂n is a
sum of terms of the form

nk/2f̂ ′(x/n1/2)`f̂ (i1)(x/n1/2) . . . f̂ (ip)(x/n1/2)F̂n−i(x)

with ` ≥ k and0 ≤ i ≤ r.
Observe that|f̂ ′(x/n1/2)| ≤ C|x|/n1/2 for some con-

stantC as f̂ ′(0) = 0 and f̂ is smooth. Each derivative of
f̂ is in the Schwartz space and therefore bounded by a con-
stant times(1 + |x|2)q for someq < ∞. Thus each term
above is bounded in absolute value by

C(r) · n−(`−k)/2|x|C(r)|F̂n−i(x)|.

whereC(r) is some constant, which we shall increase sev-
eral times, in the sequel, as necessary.

By assumption,δ being small, there is someη > 0, such
that

|f̂(x)| ≤ e−ηx2

for |x| ≤ δn1/2. Therefore, forn ≥ 2r,

sup
∆

δn1/2\∆δns

(1 + |x|2)p|∂rF̂n(x)|

≤ (1 + δ2n)p × C(r) · nC(r) × e−η(δns/n1/2)2·n
2

≤ C(r)nC(r)e−ηδ2n2s/2 → 0

asn→∞.

Bound overR2 \∆δns

As |f̂ | reaches its maximum value1 only at0, there is some
κ < 1 such that

|f̂(x/n1/2)| ≤ κn

for |x| ≥ δn1/2. Thus,

sup
R2\∆

δn1/2

(1 + |x|2)p|∂F̂n(x)|

≤ sup
R2\∆

δn1/2

(1 + |x|2)pC(r) · n−(`−k)/2 max
i
|F̂n−i(x)|

≤ κn/2 ×C(r) · n−(`−k)/2 sup
R2

|x|C(r)|F̂n−i(x)|

≤ κn/2nC(r) ‖f̂‖C(r),0 → 0

asn→∞.

Bound over∆δns

Let φr(x) = ∂rg(x)/g(x). One shows by induction that

∂rF̂n(x) =

(
φr(x) +

Nr∑
i=1

xqir

nkir/2
hr(x/n1/2)

)
F̂n(x)

whereNr < ∞, qir ≥ 0 andkir ≥ 1 are integers andhir

are smooth functions.
The firstφr(x) above is taken care of by the following

remark:

|φr(x)F̂n(x)− ∂rg(x)| = |φr(x)(F̂n(x)− g(x))|

≤ C|x|p|F̂n(x)− g(x)| ≤ C‖F̂n − g‖p,0 → 0.

The remaining terms above are bounded by:

C(r)
(1 + |x|)C(r)

n1/2−max(qir)s
|F̂n(x)| ≤ C(r)

n1/2−max(qir)s

Hence, it is enough to takes = s(r) small enough.
The claim and therefore the theorem are proved.

5. BLUR AND LOW FREQUENCIES

One of the striking implications of our result, is that blur
is a low frequency phenomenon. To check this, we have
taken a natural image and a text image and applied the fol-
lowing various kernels, writingx = ω/ωmax with ωmax the
maximum frequency:

1. the usual Gaussian kernel, the multiplication bye−16x2

in Fourier space.



Fig. 5. Profiles of attenuation used in experiments.

2. a cut-off removing all frequencies higher thanωmax/5.

This is multiplication bye−256(x−1/5)+
2
.

3. a high-pass filter which removes low frequencies. This
is multiplication in Fourier space bye−4x2/(1+103x8).

The profiles of these kernels are given in Figure 5. The
values of the coefficients have been chosen so that the im-
pacts on theL2 norm are comparable.

The resulting images are given at the end of the paper in
Figure 15 and following. In line with the previous experi-
ments, we observe that :

• a strong blur appears after the removal thelow fre-
quencies, even when the high frequencies were pre-
served;

• the two images with Gaussian filter and high pass fil-
ter have nearly identical perceptual blur;

• the removal of high frequencies, if it introduces a lot
of defects (ringing is most visible), doesnot produce
perceptual blurring.

6. PERCEPTUAL STUDY

To make the previous observations more systematical, we
have selected a collection of natural images and applied sev-
eral filters to them and asked six subjects to rank them ac-
cording to perceptual blur. The images were observed at
resolution 1:1, on the same CRT display, in the same view-
ing conditions (distance, illumination, etc.).

The filters were as above:

• none;

• gaussian;

• high pass;

• low pass.

The following gives the average rank of each version
of each picture and the average for each processing. One
sees that the images are divided into two groups: on the one
hand, we have the original image and the low-pass filtered
one; on the other hand, we have the images obtained by the
Gaussian and high pass filters. Thus the main effect is, as
expected, the filtering of low frequencies and the filtering of
high frequencies has only a marginal impact.

original low pass high pass Gaussian

Image 1 1.7 1.3 3.7 3.3
Image 2 1.0 2.0 3.3 3.7
Image 3 2.0 1.3 3.7 3.0
Image 4 1.0 2.0 3.3 3.7
Image 5 1.0 2.0 3.0 4.0
Average 1.3 1.7 3.4 3.6

7. PERFORMING THE MEASURING

We first describe some issues for the implementation of the
blur measure.

7.1. Estimating the blur

Recall that the blur of the imaging chain is the (usually
small)difference between the estimated variance of the in-
put and output images4. We have computed directly this
evolution of the variance of position in several images after
repeated convolution with blurring kernels. We have ob-
served that numerical round-off errors can affect adversely
these direct estimations, calling for more sophisticated pro-
cedures which we do not discuss here. On the other hand,
when the kernelf of the imaging chain has been estimated
from other sources, it is easy to measure the blur by com-

puting 1
2

(
∂2 log f̂

∂x2 + ∂2 log f̂
∂y2

)
at (x, y) = (0, 0). TheDxO

Analyzerof DO Labs implements this idea and the resulting
measure is called theBxU of the image.

7.2. Normalizing the BxU

Another important issue in the application of the blur mea-
sure is its normalization. The blur measure has the dimen-
sion of a surface. We note that to be able to compare dif-
ferent imaging chains it is convenient to normalize the blur
measure by declaring that the image has a standard size,
e.g.,24 × 36mm2 = 864mm2: one therefore multiplies
the blur measure in squared pixels by864/N , if N is the
number of pixels in the output of the imaging chain. The

4The variance of a single imageper sedepends on its content and does
not measure blur.



resulting blur is in squared millimiters. It may also be nec-
essary to crop the images if the fields are different.

7.3. Prints of given size of a given scene

Let us give an example of a comparison for a 200mm x
300mm print of the same scene taken by two cameras. We
consider two Canon cameras: the 1DS and the 300D, us-
ing the same 17-40mm f/4-L USMmm Canon lense, focal
length 17mm and aperture 2.8. Sharpening is off for the
1DS and set to normal for the 300D. The blur is measured
at the center of the image field:

Cam. BxU pixels field BxU BxU
RAW 200x300mm Corr.

x 106 % x 10−3 x 10−3

1DS 1.26 11 100% 6.9 17.5

300D 1.74 6 40% 17.4 17.4

Table 2. BxU for two cameras: in raw pixels2, in mm2 for
200× 300 prints (of the full field of each camera), in mm2

for 200× 300 prints of crops to same field.

The lower raw value of the blur for 1DS camera shows
that it gives natively a slightly sharper picture than the 300D
camera when viewed 1:1 on a given screen.

What happens now if one looks at the pictures when
printed on a 200mmx300mm format ? We then have to nor-
malized the BxU accordingly. Since 300D pictures have
less pixels than the ones produced by the 1DS, the zoom
factor, to achieve this format, will be larger for the 300D.
This results in a BxU for the 300D picture which is now al-
most 3 more times bigger than for the 1DS picture. Since
both cameras use the same lens, one can ask: where does
this difference of sharpness come from?

The sensors in the 1DS and 300D do not have the same
size. They do not cover the same field. The 1DS has a full
field sensor (24mm x36mm) where the field of the 300D is
around 40% of the 24mm x36mm. Now, let us crop the 1DS
picture to the part corresponding to the field of the 300D
and then resize this to a 200mm x300mm format. The two
200mm x300mm prints now correspond to the same scene.
The BxU of the the 1DS print has to be normalized by mul-
tiplying the raw BxU by200x300/(11.106x40%), which
gives a value almost equal to the 300D one. This last nor-
malization allows one to see that these two cameras (using
the same optics) in fact have thesame qualitywith respect
to blur.

Uniform quality across output devices

Suppose that one wants to deliver the same visual qual-
ity through a range of output devices. For example, one may

wish to limit the visible blur to 1 pixel2 on a 17-inch com-
puter screen viewed 50 cm away. This screen corresponds
to a solid angle of about0.37 steradians. If the resolution is
1024x768, then the required maximum blur is5 · 10−7 sr,
the solid angle under which a pixel is viewed.

Now, what is the requirement for producing an equiv-
alent 10x15 cm print made of 1024x768 pixels? Say that
such a print will be viewed 40 cm away, occupying a solid
angle of about0.09 sr. Each squared pixel on the print is
therefore1.2 · 10−7 sr. Thus one can tolerate a blur of up to
4 pixels2.

Remark.This illustrates the well-known fact that view-
ing an image on a screen is much more demanding than
simply looking at a medium-sized print.

7.4. Blur and diffraction

Diffraction comes into play at small apertures. We assume
therefore in the following computation that one can disre-
gard the effect of the lenses and just consider “pin-hole”
image formation.

Let us consider a circular aperture of radiusa in a thin,
perfectly conducting plane and a linearly polarized incident
plane wave with electric fieldE(x) = E0e

ik0·x making an
angleα with the normal to the conducting plane. We com-
pute the wave diffracted into a direction making a angleθ
with the normal to the conducting plane. Letφ be the az-
imuthal angle of the direction of emission with respect to
the line of polarization.

The Smythe-Kirchhoff vectorial approximation is the
recommended approximation for optics according to [13].
It gives a power per solid angle unit of (eq. (9.162) of [13],
page 443):

dP

dΩ
=

cE2
0

8π
πa2 cosα︸ ︷︷ ︸

normally incident power

· cosα
(ka)2

4π
×

× (cos2 θ + cos2 φ sin2 θ) ·
∣∣∣∣2J1(kaξ)

kaξ

∣∣∣∣2 (4)

wherek = ‖k0‖ and

ξ2 = sin2 θ + sin2 α− 2 sin θ sinα cosφ.

Natural light being unpolarized, it contains the polarization
corresponding toφ = 0 which gives the dominant contribu-
tion according to eq. (4). We thus setφ = 0. ξ becomes:

ξ = | sin θ − sinα|

|θ− α| must be small because of the very large factorka in
eq. (4).

Assuming thatθ is small, we finally obtain, denoting
by f the distance between the stop and the image plane,



ξ = cos θ · r
f wherer is the distance between the geometric

image of the incoming plane wave and the considered point.
Thus, the image function of a single point is proportional to
the Airy function:

Ai

(∣∣∣∣2J1(ρ)
ρ

∣∣∣∣2
)

with ρ =
2πar
λf

=
2πr
λn

wheren = f/a is the usualf -number.
A key remark is that this function is a rapidly decreas-

ing: Ai(ρ) ≤ 10−3 · Ai(0) for ρ ≥ 12.4 which corresponds
to r ≥ 12.4λn

2π ≈ 22µm for λ = 0.5µm andn = 22.
We introduce the corresponding cut-off in our computations
as follows. LetÂi(ρ) = Ai(ρ) if this value is larger than
10−3 Ai(0) and zero otherwise. The BxU is then given by:

∫∞
0

Âi(ρ)
(

λn
2π

)3
2πρ3dρ∫∞

0
Âi(ρ)λn

2π 2πρdρ
=
λ2n2

4π2

∫∞
0

Âi(ρ) ρ3dρ∫∞
0

Âi(ρ) ρdρ

= 0.21µm2 · λ2n2 = 0.21 ·
(
λn
s

)2

pixel2 (5)

if pixels have as2 area.

n 2.8 4 5.6 8 11 22
Cameraphone 0.06 0.11 0.21 0.43 0.81 3.25

300D 0.01 0.03 0.04 0.10 0.18 0.7
1DS 0.006 0.01 0.01 0.04 0.06 0.31

Table 3. BxU in raw pixels2 for three cameras with
different pixel sizes of 2.8µm, 6µm and 9µm and various

aperture number.

Let us remark that the order of magnitude of these re-
sults could have been predicted as follows. The central disk
of an Airy figure has radius1.22× λ× n so one indeed ex-
pects to see a 1 pixel2 blur starting atN ≈ 14 for a medium
quality digital camera.

We see that, whereas in cameraphones diffraction can
contribute significantly to blur, this is not the case for high
quality digital camera except at very small apertures.

7.5. Blur as a function of aperture, focal length and po-
sition

Let us give some examples of assessments performed on
optical devices. Figure 6 illustrates the variation of image
quality depending on the aperture and focal length. One
clearly sees the existence of a preferred, not extreme aper-
ture and focal length. Remark that:

Fig. 6. Blur at the center of the image field of ******, as a
function of the lens aperture (A) and focal length (f).

Fig. 7. Blur as a function of position in the image for a
Canon 1DS with Canon EF 16-35mm f/2.8L USM, 16 mm
focal, aperture 2.8, focused at infinity.

• large apertures present generally more blur, since it
is more complex to concentrate light rays away from
lenses centers.

• small apertures give rise to diffraction as seen in the
previous section.

One can also measure the blur locally, by dividing the
image in small subimages. Top quality cameras offer an
approximately constant quality throughout the image, see
fig. 7 (Canon 1DS with Canon EF 16-35 mm f/2.8L USM).

This degradation in the corner of images is visible in the
small detail in Figure 8.

Cameras found in mobile phone have a much variable
sharpness, due to obvious constraint of manufacturing:

8. ASSESSING ALGORITHMS

Linear digital processing admit a blur just as well as physi-
cal optical chains. We first show the effect of standard blur
and sharpening on the blur measure. Then we explain how



Fig. 8. 400x400 bottom left corner of a 4064x2704 image
taken with the same material and setting than with the pre-
ceding figure. We see a strong increase of blur near the
edge, as predicted by the measurements.

Fig. 9. Blur as a position in the field for a camera embedded
in a cell phone.

Fig. 10. Photograph taken with a cell phone.

Fig. 11. A natural image convoluted with larger and larger
Gaussian kernels (beginning).

Fig. 12. A natural image convoluted with larger and larger
Gaussian kernels (end).

linear zooms can be evaluated from the point of view of
blur - here one has to deal with the discrete nature of digi-
tal images and the underlying sampling. We then exhibit a
linear filter which decreases both the blur and the noise and
investigate the theoretical and practical limits of this “opti-
mizing”.

8.1. Blur and filtering

We first blur and sharpen some natural images and see how
the blur measure correlates to the perceptual quality of the
results. The resulting images and blur measures are shown
in Figures 11-14.

8.2. Discretized convolutions

We refer to [25] for background on convolution as interpo-
lation. We represent digital imagesum,n∈Z by distributions
u =

∑
m,n um,nδ(m,n). A discretized convolutionL is a

mapL : u 7→ v with

v = C1 · (u ∗ ϕ)

whereC1 =
∑

m,n δ(m,n) is the Dirac comb representing
the sampling andϕ : R2 → R is some kernel. We assume



Fig. 13. A natural image.

Fig. 14. The natural image above after a sharpening.

the kernel to be normalized and centered:∑
m,n

ϕ(m,n) = 1 and
∑
m,n

mϕ(m,n) =
∑
m,n

nϕ(m,n) = 0.

We define the blur of such a transformation to be:

B(L) :=
∑
n,m

(n2 +m2)ϕ(n,m).

Thus,B(L) reflects the “quadratic size” of the spot diagram
of L in the following sense. Ifσ2 is the blur of the rendering
device (say the quadratic size of the pixels of a screen), then
B(L) + σ2 is the variance of the position in the image gen-
erated byL and the underlying device from an image with
just one white pixel. Said differentlyB(L) is the increase in
blur when the convolutionL is applied before transmitting
the image to the given rendering device.

Such a formula is an obvious discretization of our theo-
retical blur measures. Additivity still holds in this discrete
setting:

B(L2 ◦ L2) = B(L1) + B(L2)

Indeed, assuming a one-dimensional image for simplicity of
notation, the kernelϕ3 of L2 ◦ L3 is given by:

ϕ3(n) =
∑
m

ϕ2(m)ϕ1(n−m)

and

B(L1)+B(L2) =
∑
n,m

(m2+(n−m)2)ϕ2(m)ϕ1(n−m)

=
∑
n,m

(n2 + 2m2 − 2mn)ϕ2(m)ϕ1(n−m)

Using that∑
m

ϕi(m− k) = 1,
∑
m

mϕi(m− k) = k

we see:∑
m

m2ϕ2(m)
∑

n

ϕ1(n−m) =
∑
m

m2ϕ2(m)

and ∑
m

mϕ2(m)
∑

n

nϕ1(n−m) =
∑
m

m2ϕ2(m)

Therefore

B(L1) + B(L2) =
∑
n,m

n2ϕ2(m)ϕ1(n−m) = B(L2 ◦ L2)

This proves additivity.



8.3. Application to linear zooms

We show how the blur measure can be applied to study lin-
ear zooms. To keep this illustrative section simple, we shall
make some approximations that are valid for large zoom
factors (see eq. 6). A definitive study would require doing
the discrete computations explicitely.

In the above formalism, a linear zoom of factorλ > 1 is
a mapZ : u 7→ v with

v = C1 · Φλ(u ∗ ϕ)

whereΦλ(ψ) = λ−2ψ(·/λ, ·/λ). That is,

vk,` =
∑
m,n

λ−2ϕ(k/λ−m, `/λ− n)um,n

We again define the blur to be the quadratic size of the cor-
responding spot diagram:

B(Z) =
∑
k,`

(k2 + `2)λ−2ϕ(k/λ, `/λ)

If λ is large, then

B(Z) ≈
∫

(x2 + y2)ϕ(x, y) dxdy.

This notion is approximately additive. Let us prove that
B(Z ◦ Z ′) ≈ B(Z) + B(Z ′) under reasonable hypothesis,
eq. (6). Writingv = Z ′(u) andw = Z(v) and again
pretending that there is only one dimension for simplicity,

wn =
∑
m

λ−1ϕ(n/λ−m)vm

=
∑
m,k

(λλ′)−1ϕ(n/λ−m)ϕ′(m/λ′ − k)uk

=
∑

k

(λλ′)−1ϕ′′(n/λλ′ − k)uk

with

ϕ′′(n/λλ′ − k) =
∑
m

ϕ(n/λ−m)ϕ′(m/λ′ − k)

=
∑

M∈Z/λ′

ϕ(n/λ− λ′k − λ′M)ϕ′(M)

with M = m/λ′ − k. SettingN = n/λλ′ − k, we see that
the above equality holds if, for allN ∈ Z/λλ′:

ϕ′′(N) =
∑

M∈Z/λ′

ϕ(λ′(N −M))ϕ′(M)

A computation entirely similar to the one for composition
of discretized convolutions proves the claim provided that,
for z = λ, λ′, we have the normalization and centering:∑

n∈Z/z

ϕ(n) ≈ 1 and
∑

n∈Z/z

nϕ(n) ≈ 0. (6)

Example

We consider zooms of the above formZλ(f) = C1 ·Φλ(u∗
ϕ) for:

1. (piecewise constant)ϕ(x) = 1[−1/2,1/2];

2. (pieceiwse linear)ϕ(x) = 1[−1,1](1− |x|);

3. (bicubic)ϕ(x) = (a + 2)|x|3 − (a + 3)|x|2 + 1 for
|x| < 1, a|x|3 − 5a|x|2 + 8a|x| − 4a for 1 ≤ |x| < 2
andϕ(x) = 0 for |x| ≥ 2.

For large zoom factors,B(Zλ) ≈ 2
∫
x2ϕ(x) dx and we

obtain:

1. 1/6 for the piecewise constant case;

2. 1 for the bilinear case;

3. (8a + 4)/3 for the bicubic case. It is zero fora =
−1/2, the much used bicubic interpolation scheme of
Keys [15].

Consider an imaging chain made of a camera with blur
σ2

1 (in squared pixels) and a screen with blurσ2
2 (in mm2)

so that the resulting blur is

σ2 := κ(Sσ2
1 + σ2

2)

in steradian ifS is the surface of a pixel on the screen andκ
is the solid angle corresponding to a unit of surface on the
screen.

We now insert one of the above zooms with blurB and
scale factor ofλ just before the screen in this same optical
chain. The blur of the imaging chain becomes:

σ2
Z := κ(λ2S(σ2

1 +B) + σ2
2)

Comparing with a pure rescaling (i.e., a closer look to the
same screen) for which the blur would becomeλ2σ2 we
have:

σ2
Z = λ2σ2 + λ2κ(SB − (1− λ−2)σ2

2).

We see that

• for the piecewise constant zoomSB ≈ σ2
2 , hence

the effect is about the same as looking closer at the
screen —we have just “painted” big pixels using the
small screen pixels;

• for the bilinear zoom the blur is significantly increased
as it is expected;

• for the bicubic zoom only the camera blur is multi-
plied byλ, but the screen blur stays the same.



One could ask whether a zoom with negative blur would not
be even better but it is obvious that blur does not, by itself,
capture all the quality of a zoom and misses some defects
like blockiness, ringing or saturation. Indeed, a zoom which
would just insert black pixels would be best if minimizing
blur was the only criterium. Nevertheless, we think that
the blur measure has a role to play in a theory of “optimal
zooms” as developed in [25].

8.4. Linear filtering of blur and noise

We investigate in this section the relationship between blur
and another image defect:noise. We consider here additive
noise, that is, the observed image is the ideal image plus a
random image. The noise level is measured as the variance
of the grey level of a pixel of this random image.

One often considers that there is a direct trade-off be-
tween reducing noise and reducing blur. It is expected that
sharpening will blow up noise and, conversely, that the re-
duction of noise requires smoothing which inevitably add
blur. We prove in this section that things in fact are more
complicated. One can indeed decrease both blur and noise
by a linear filter. However, another kind of defect will ap-
pear, so that it is not clear how to take practical advantage
of the previous remark.

8.5. Improving both noise and blur

Consider the following discrete kernel:c b c
b a b
c b c


We assume that the optical chain is defined byu 7→

K ∗ u + n whereK is a normalized kernel andn is an im-
pulsional noise with grey level random varianceσ2, i.e., an
array of i.i.d. random variables with mean0 and varianceσ2

(to make the analysis easier). The blur added by the optical
chain isB(K), which is4b+ 8c. A straightforward compu-
tation shows that the random variance of the grey levels in
the processed image is:σ2(a2 + 4b2 + 4c2).

We assumeK to be:

• normalized:a+ 4b+ 4c = 1;

• non bluring:4b+ 8c = 0;

• noise reducing:a2 + 4b2 + 4c2 minimum.

The best choice is therefore:−1/9 2/9 −1/9
2/9 5/9 2/9
−1/9 2/9 −1/9



Fig. 15. A natural image.

It multiplies the noise by5/9 without increasing blur (one
could obviously decrease the noise a little less and actually
decrease the blur).

We present a natural image (Fig. 15) and its “optimized”
version obtained by applying four times the above 3x3 filter.
One sees that the simultaneous removal of blur and noise
has in fact a cost: the image becomes “textured”.

9. CONCLUSION

In this paper we have shown that once one writes down a
minimum list of reasonable mathematical properties that a
useful blur measure of imaging chains should possess, there
is a unique theoretical solution: thevariance of the posi-
tions in the kernel.

This variance had of course been considered in many
related problems, e.g., blind deconvolution or depth esti-
mates from blur (see for instance [20, 16] and the references
therein) — or showed to be strongly correlated with other
seemingly distant blur assessments both objective and sub-
jective [19]. But our result is independent of any assumption
on the blur kernel (which we do not need to estimate and
which maybe far from Gaussian). In fact, the main point of
this paper is to give a unique coherent extension to arbitrary
kernels of the obvious blur measure for Gaussian kernels
which are generally assumed in most of the literature.

The uniqueness we obtain offers a potential bridge be-
tween our mathematical approach and psychophysical blur.
Experiments presented above and the use of the resulting
measure5 by professionals6 which previously used other,

5DXO Analyzer of the DXOLabs company.
6Photograph magazines like [7, 18] and mass retailers [10].



Fig. 16. A natural image “optimized”.

more classical tools before have shown that a very mean-
ingful connection does exist.

Our result implies that high frequency attenuation is,
contrarily to expectations, irrelevant to the measure of blur
and, by the above connections, to perceptual blur. One can
remember that human perception is quite insensitive to high
frequencies, so that our result should perhaps be less of a
surprise. We also remark that our measure has a natural in-
terpretation in terms of the spot diagram: it is the square of
the “size” of the spot diagram, as measured by its second
order moment.

In this paper, we have shown how this blur measure can
be used for the evaluation both of physical optical chains
and algorithms. We believe that beyond the simple exam-
ple we presented above, this blur measure can be used to
optimize zooms and other linear algorithms (cf. [3]).
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Fig. 17. A natural image.

Fig. 18. Natural image convoluted with a Gaussian kernel.

Fig. 19. Natural image with low pass filter.

Fig. 20. Natural image with high pass filter.


