UNIQUENESS OF BLUR MEASURE
Jerdome BUZZ1 and Frécéric GUICHARD

DXOLabs
3, rue Nationale - 92100 Boulogne - FRANCE
jbuzzi@dxo.com, fguichard@dxo.com

ABSTRACT In the spirit of the approach of [1] to scale-space PDE

. ) ) (see [11, 12, 29]), we derive mathematically a unique solu-
After discussing usual approaches to measuring blur of 0p-tion to this problem and then study how it relates to percep-
tical chains, we show theoretically that there is essentially tjon and apply it to imaging problems.

a unique way to quantify blur by a single number. It is the
second derivative at the origin of the Fourier transform of ~ Blur is often measured in the two following way. The
the kernel. This somewhat surprisingly implies that blur is first one is theModulation Transfer Function or MTF
especially sensitive to attenuation of thev frequencies.  (see, e.g., [22]):
The blur measure is in fact the quadratic size of the spot di- R
agram. A series of experiments show that this measure is MTF(w) = J | 9(w cosf,wsind)| df
correlated to perceptual blur. We verify that the blur mea- J |f(wcosb,wsinb)| dO
sure behaves as expected with respect to the standard "blur”
and "sharpen” tools of usual image processing tools. We ap-wheref, is the Fourier transform of the true image ahis
ply the measure to assess quality of cameras, natural imageghat of the observed image. A perfect imaging chain would
and image processings. haveMTF (w) = 1, but real imaging chains attenuate high
frequencies so thatITF(w) — 0 asw — oo. Figure 1
shows a typical MTF. The MTF can be evaluated by mea-
suring the response to a black-on-white edge, like the ones
found in the 1ISO 12233 test chart [21].

The MTF seems to contain all the relevant information

1. INTRODUCTION (it forgets the possible non-isotropy of the imaging chain
and the phase of the underlying kernel —see below). Also,

The blurring produced by an imaging chain, be it a cam- the MTF of a concatenation of chains is the product of their
era, a screen or an image processing algorithm, is a keyMTFs. However it is a whole function where one would like
component of its quality. We note that perceptual blur is a single number and it contains lots of information irrelevant
a loosely defined concept (which may cover multiple and to blur.

complicated psychophysical phenomena) which has been . . . . .
studied before mainly as “the effect of a Gaussian filter” Remark.The spot diagram is the image of an ideal point.

(see, e.g., [2, 14, 27]). In this paper we ask a different A perfect pptical chain V.VOUId reproduce a;ingle point. A
question. We look for a way to quantify (non-necessarily real one gives a spot which can have a variety of shape, size
Gaussian) “bluriness” as it is produced by various imaging and colprs. The spot dlagram Is ideally the 'mage of the
chains (i) by a single number so that one can compare irnag_underlymg kernel. Such_ diagrams are much used in optics
ing chains; which is (ii) correlated to the perceived level of [22]. As they arle thezretlcally very close to MTFs, the same
blur; (iii) can be composed in the sense that concatenatingcommentS apply to them.

imaging chains results in a blur which a function of the blurs It is a common practice to try to extract a representative
of the imaging chains, e.g., the blur of a camera should be anumber from the MTF. This is done by looking at its val-
function of the blur of its optics, its sensor and the following yes at some definite frequencies (for instance Cimesp.
processing. We note that this work does not deal with the Olympug, recommends using the value of the MTF at 30
blur of imagesper se(see [9] and the references therein).  |p/mm, resp. 60 Ip/mm, on the 24x36mm film to assess

Keywords: Image analysis, image quality, blur, unique-
ness.

*From C.N.R.S. U.M.R. 7640 & Ecole polytechnique, Palaiseau, 1See the glossary attp://consumer.usa.canon.com
FRANCE. 2See the MTF charts &ittp://www.olympus-pro.com



the “sharpness”, whereas the value at 10 Ip/mm, resp. 20
Ip/mm, should give the “contrast capability”). There is an
obvious arbitrariness involved in these choices.

There are other ways to extract a number: taking the
area under the MTF curve or looking at the frequency where
the MTF drops below some high treshold, e.g. 75%.

Modulation Transfert

Limting res olution
lapproximate nois & kvel

Another related number is thieiting resolution (see, N B
e.g., [22]). Itis the size of the smallest visible details or, in - ‘ ;
other terms, the highest spatial frequency visible in the pro-
duced image. It can be measured from the MTF by declar- Fig. 2. MTE’s differing only for largew.

ing it to be the frequency where the MTF falls below a low
threshold like 5%.

In these ways, one obtains numbers with a clear mean-
ing. However, knowing such numbers for different optical
chains does not allow one to predict the corresponding num- oy 8 prress 8
bers for their concatenation (which can describe the zoom-
ing or printing required to actually use the images).

There is therefore a need for a better way to quantify e 1 U' i 1 0
blur with respect to the evaluation of imaging chain quality. i Sl
To provide an answer we axiomatize the problem to analyze
it mathematically: an imaging chain is given by its kerhiel — 1 2 — '1 2
and the corresponding blf({ K') satisfies:

¢ the blur of a Gaussian kernel is non-zero;

¢ the blur of a concatenation of optical chains is a func- 1 4 1 4

tion of the blur of each of the chains (and does not
depend on any other characteristics of these chains);

e the blur is not affected by displacements within the 1 6 1 6
plane of the image: if is an isometry of the plane,

thenB(K o I) = B(K) for any kernelK’; Fig. 3. Same perceptual blur with different limiting resolu-

« the blur observed from a distandéis a function of ~ tiONS.

the blur at a distancé and the ratial’ /d.

(A precise statement of these axioms and a more detailed 8 8
discussion is given in Section 3). For now, let us comment
the last axiom. It is clear that the perceived blur of an im- —
age, say a given print, depends on the distance at which it is
observed. The axiom requires that there exists a fundfion e 1 0 — 1 0
— o
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; ; ; Fig. 4. Different perceptual blurrings with the same limiting
Fig. 1. A typical MTF is close tal for w ~ 0 and then falls X X
g 5P v resolution (1ISO-12233 chart, detail).
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such that the blur observed at the distatté F(d/d’,b) We show that this mathematically defined measure is re-

whereb is the blur as observed at the distamce lated to perception by a psychophysical experiment (section
We obtain the following result (stated more precisely in 6) which confirms the view of practitioners (mass retailers,
section 3): journalists) which have adopted this measure. Then we ex-

plain how these mathematical results can be used, giving a
Theorem 1 Any blur measure with the properties above can detailed example of the assessment of cameras with given
be written asl (B(K')) whereK is the normalized kernel of  optics, print format and viewing conditions (section 7). We
the imaging chain¥ : [0,00) — [0, c0) is a fixed, increas-  finally present two applications to digital image processing:

ing diffeomorphism and we evaluate a family of linear zooms and we show tmth
) . blur and noisecan be reduced at the price of “texturing”
B(K) = 7% tr 9 (,I;%K(O, 0) (section 8) before concluding.

A short version of this work was presented at [6].
whereK is the Fourier transform of the kernel of the opti-
cal chain andtr is the trace. Moreovei is the only blur
measure which has the following additional properties:

o itis additive: B(K * L) = B(K) + B(L); 2.1. Imaging chains and convolutions

An imaging chain is some collection of devices which takes
on input an image (assumed to be some positive function
For a Gaussian kerndl (z, y) = (2r0)~le~(@*+y")/20* ~ 0On the plane) and outputs another image. We assume the

B(K) is simply its usual paramete?, as one could expect. Maging chains in this paper to be:
This shows in what sense Gaussian blur can represent ar-
bitrary blur as it is often assumed in the literature. More
interestingly, this formula gives, for arbitrary kernels, the  (2) jinear;
relevant generalization of the parameiér

Remark that the blur measure is therefore determined by (3) translation invariant;
the behavior of the kernel at vanishing frequencies: contrar-
ily to a widespread belief (see, e.g., [19, 17]), blur is not  (4) L' norm preserving.
primarily related to high frequency attenuation or low pass
filters

We can already make a few comments. Firstly, itis well-
known that the contrast sensitivity of the human visual sys-

tem is rather low at high frequencies, hence it is perhaps 5 ical devi iy i i
not so surprising that these do not play such a big role in (2) Optical devices are certainly linear. Films or CCD

the overall quality of an image. Secondly, as Figures 2-4 detectors are often non-linear in theory but one usually tries
show, one can have MTFs with the same behavior at highto use them in th_e|r Im_ear regimes. . ) )
frequencies (in particular the same limiting resolutions) and (3) T_he situation with respect to t_ranslat|on Invariance Is
yet very different perceptual levels of blur and conversely. Similar: it rarely holds perfectly (for instance there is often
Thirdly, this derivative in the Fourier domain has a simple Vignetting), ?Ut one usually strives to approach it.
interpretation in space and one can reformulate the previous ~ (4) TheL” normis the integral of the intensity and there-

2. AXIOMATICS OF BLUR MEASURES

e itis 1 for the Gaussian kernel with variande

(1) positive;

These assumptions can be justified as follows.

(1) Images are nonnegative functions, so imaging chains
map nonnegative functions to nonnegative functions: this is
the definition of positivity.

theorem as: fore the physical energy [4]. By this normalization we make
the measure independent of global dain

Theorem 2 The above blur measure for an optical chain Properties (2)-(4) are well-known [5, p. 72] to imply

given by a normalized kernd{ is that imaging chains correspond to convolutions, i.e., imag-
ing chains correspond mathematically to the following op-

B(K) = %/ (22 + 1)K (, y) dudy. erations on imageg:
2
. f—Kxf

In particular, it is obviously related to the size of the spot
diagram which is very natural. with a kernelK which is aL' nonnegative function over the
The proof of these resilts is given in Section 4. We ap- plane. Notice thal( is essentially the spot diagram in terms

ply various k.emels to c_:onfirm that IO_W frequenCies i_ndeed 3Such a global gain may well have a perceptual impact but this is not
play the dominant role in the perception of blur (section 5). the subject of this paper.




of optics. The energy normalization is obtained by dividing Now, B(K**") = B((K*)?') givesF. o F, = F.., SO
K by its L' norm. that:

The transform of a point through an imaging chain is ex- d(z2') = ¢p(2)p(2)).
pected to have essentially a finite size. Thus we can assume i+ this implies that ()
that the kernel has finite moments of all orders.

= z* for some fixed numbek.
Thus we have shown that:

B(K?) = 2 B(K).

/xK drdy = /yK drdy =0 @) We can interpret this as saying that a change of length unit

N ) . (in K) gives a simple change of blur unit (B K)).
These conditions can be ensured just by translating the ker-

nel K. I
2.2.3.
We let K be the set of kernels, i.e. all nonnegative, 3. Continuity

functions, with finite second order moments and satisfying Recall that the Schwartz spasg23] is the set ofC> real

We also assume for convenience the normalizations:

the normalization (1). functions oveiR? satisfying:
We denote the Gaussian kernels by |ex]
Vp > 0Va | fllpa = sup |x|P s ‘ < 00
Go2_ o2 (2,y) i= _ e=T /205, —v" /20y, ver
" 2M0220yy wherea ranges over nonnegative multi-indides , a2) and
and simplifyG.,z ,2 t0 Gyz. |z| is the Euclidean norm of. The Schwartz topology is
’ given by:
2.2. Blur measures fn— finSiffforeveryp, o, || fn — fllpa — 0.
We formalize the axiomatics given informally in Section 1. Let K’ be a subset of. N S endowed with some topol-

Let us stress that, at this point, we are looking farseful — ogy. £ is admissibleif it contains all Gaussian kernels, if
quantification of blur, not a psychophysical model of human it is stable under convolution:

perception. We shall discuss later evidence of a correlation.
frgeK = fxgek’

2.2.1. Additivity and if its topology is weaker than that &f

The main requirement on blur measure is that the blur of a fao—finS = f, — fink

concatenation of imaging chains is the “composition” of the '

blurs of the imaging chains in the following sense. There is ;
: . 2.3. Axioms

a continuous group law on an intervall C R such that

We are now ready to state the axioms that we require of a

B(K + L) = B(K) o B(L) blur measure, which are either the formalization of proper-

But this readily implies that there is a diffeomorphigim: ties given in Section 1, a consequence of them, or an irrele-
I — Rsuch thatl(zoy) = z+y. Hence, up to the change ~ Vant normalization.

of coordinatesl, the composition property implies that the
measure is additive. (i) Normalization: B(G1) = 1;
(i)  Additivity: forall f,g € IC,
2.2.2. Rescaling B(f =g) = B(f) + B(g);
(i)  Invariance: if H is an isometry of the plane,
The second requirement is the covariance w.r.t. change of B(f o H) = B(f);
scale or distance of observation: there is a contingeus — (iv) Scaling: there is a positive function such that
F.(b) such that, itz is some zooming factor, thef( K *) = for eachf € K, A > 0:
F.(B(K)), whereK*(z,y) = 2*K (2x). B(f\) = 6(N)B(f)
Observe first that, a&* + L* = (K L), we must wheref(z,y) := Af (Az, Ay);
have: (v) Stability: B: K" — Ris continuous.

B((K™)?) = F.(nB(K)) = nF.(B(K))
Definition 1 If B : K’ — R satisfies properties (i), (i), (iii),

Thus, F%;(rb) = rF.(b) whenr > O's, first, integer, then 204 (v) then we say that is anadditive blur measure.

rational and finally an arbitrary real (using the continuity of
F). ThereforeF, (b) = ¢(z)b for some reap(z). Observe that property (i) is a trivial normalization.



3. MAIN RESULT

Our main result is the following uniqueness statement:

Theorem 3 Let K’ be an admissible subset of the Schwartz
spaceS. Define forf € K’,

2

Og

(f) = /R2 22 f(x,y) dedy

and definer?(f) likewise.
There is a uniquadditiveblur measure. It is given by:

(o

if this is a continuous functional ovet’.
is no blur measure.

2(f) +oy(h)

Otherwise there

We remark that the above theorem is valid in a wide
range of reasonable topologies so it is not tied to a delicate
technical choice.

We also observe that there there is no blur measure in
any LP topology for anyp. The weakest admissible topol-
ogy is of course given by the norm:

1= [ @+ 9] dady

on the obvious Banach space.

4.1. Blur measures for gaussian kernels

The additivity property (ii) together witlG,2 * Gg2 =
G232 implies that

B(Gn) = nB(Gy).

t — B(G;) being continuous i and therefore irC, this
is well-known to imply that3(G;) = ¢t for some constant
c. The normalization (i) implies that= 1. Thus,

B(GO-Q) = 02

By invariance (i) B(G »2 /2,32 /2)
using the additivity (ii’):

= B(Gp2/2,42/2), hence

B(Garg2) = B(Gazjz,p2/2 % Gazy2,62/2)
= B(Gaz/2,62/2) + B(Gaz/2,52/2)
= B(G 2/2,62/2) + B(Gﬁ2/z,a2/2)
= B(Gaz)2,82/2 % Gp2y2,07/2)
(

B(G (a2452)/2)-

Finally, we see that for an additive blur measure one must

have: )
B(Gy252) = §(a2 + 62),

i.e.,p(t) = 1forall t in the previous resultX?).

)

4.2. Reduction of the general case to Gaussian kernels

In this section is an arbitrary additive blur measure. We
are going to show thaB(f) = B(G,z2 s2) Wherea?

Let us stress that the blur measure is defined essentially?(f), 5° = o2(f).

by its scalar nature (it is a single number) and its invariance
(or composition) properties. The only essential assumption
which is explicitely related to the usual notions of blur is
that the blur of a Gaussian kernel is non-zero.

4. PROOF OF THE MAIN RESULT

This section is devoted to the proof of the Main Theorem

above but let us say before a few words about the ideas in-

volved.

Intuitively, the requirement tha8( k') be isotropic and
additive essentially says th&t is a linear function of the

logarithm of the MTF. This dependence, because of the scale
invariance, must be restricted to the zero frequency. The ad-

ditivity finally implies that it is (proportional to) the vari-
ance.

Technically, we have the necessary continuity properties
so that we can start from the Gaussian kernels and general
ize to arbitrary kernel through a lemma which is just the
usual proof of the central limit theorem of Probability The-
ory.

Let f = TF(f) be the Fourier transform of an image

f € K. Observe that- 2% £(0,0) = [[ 2 f(x,y) dudy and
similarly for the other second order derivatives. Note that
the centering of the kernel implies that f /92:9y(0,0) =
0. Let B(f) = B(TF(f)).

The scaling property gives:

A

B(f.i2) = ~B(f). (3)

As f.g = f/*\g,Athp additivity property (i) gives, for any

integern > 0, B(f™) = nB(f). Together with (3), this
ives

By =B ((fur))-
Claim. Settingg(w,, w,) = e~ “/2-F°“,/2 e have, for
all integersp > 0 and multi-indexx,
) 1(fp172)"™ = Gllp.a — 0 asn — 00.

This will show thatf*?,, — g in S, hence inC’ whose
topology is assumed weaker.



Remark.The proof of this claim will be essentially that of Bound overR? \ Ag,,s

the Central Limit Theorem [24]. .
[24] As | f| reaches its maximum valdeonly at0, there is some

Before proving the claim, note that it implies the theo- x < 1 such that
rem. Indeed, the continuity & in X’ impliesB(f) = B(g) .
and the conclusions of the theorem follow from the previous |f(x/n1/2)| < K"

analysis of the blur measures for Gaussian kernels.
for |z| > on'/2. Thus,
The first step in the proof of the claim is to observe that

sup  (1+ |x|2)p|8ﬁn(m)|

Fo(a,y) = o (w,9)" = fla/n'/2,y/nt /)", RAA 172
Write < sup (L4 [aP)PC(r) - n~ TP max |F, (@)
R? \Aénl/z !
Ay = {x e R?: |z < tnl/?}).
n/2 L~ (=k)/2 Cr .
and lete > 0 be arbitrarily small. Sk xC(r)-n P [ i)
Recall that the semi-norm that we have to bound is: < /20,0 () Hf||c( 10— 0
sup\x|p\8o‘(ﬁ‘n—g)\. asn — oo.

Let0 < s < 1/2 be a parameter to be specified latter.
Bound over Ag,,s

Bound over Ag,1/2Asps Let¢,.(x) = 0"g(x)/g(x). One shows by induction that
An easy induction shows that th¢h derivative ofF, is a R plir K
sum of terms of the form 0" F,(x) ( )+ Z ah x/n1/2)> F,(x)

n

k/2 f1 1/2\2 £(i1) 1/2 ip) 2yfo .
n x/n x/n x/n n—ilx
Fel el ) 2h (e/ ) (=) whereN,. < oo, q;» > 0 andk;, > 1 are integers and,;,.
with £ > k and0 <1 <. are smooth functions.
Observe thatf’(x/n1/2)| < Clz|/n!/? for some con- The first¢,.(x) above is taken care of by the following
stantC as f/(0) = 0 and f is smooth. Each derivative of ~remark:
f is in the Schwartz space and therefore bounded by a con- . o _ 2 _
stant t|meq1 + |$‘2)q for someq < oo. Thus each term |¢r($)Fn($L’) 0 g(l‘)‘ - ‘ng( )(Fn(l') g(l‘))l

above is bounded in absolute value by < C‘x|p‘ﬁn(x) —g(z)| < CHF — gllpo — 0.
C(r) - n~ER/212|CN B (). The remaining terms above are bounded by:
whereC(r) is some constant, which we shall increase sev- (1+ ]z C(r)

C(r) [Fn(2)] <

eral times, in the sequel, as necessary.

By assumptiong being small, there is somg> 0, such .
that Hence, it is enough to take= s(r) small enough.

|f(x)| < ez’ The claim and therefore the theorem are proved.

nl/2—max(q:r)s nl/2—max(qir)s

for |z] < dn'/2. Therefore, fom > 2r, 5. BLUR AND LOW FREQUENCIES
sup (14 [2])P[0" Fu ()]

A, 12 \Agns One of the striking implications of our result, is that blur

is alow frequency phenomenon. To check this, we have
taken a natural image and a text image and applied the fol-

C(r) o pn(on® /nt/?)%.3 Iowipg various kernels, writing: = w/wmax With wp,.x the
maximum frequency:

IN

(1+6*n)P x C(r) - n
C’(r)nc(”67’752"23/2 —0

IN

1. the usual Gaussian kernel, the muItipIicationabﬂfGI2
asn — oo. in Fourier space.



Attenuations The following gives the average rank of each version
of each picture and the average for each processing. One
sees that the images are divided into two groups: on the one
hand, we have the original image and the low-pass filtered

0 —Gamsn one; on the other hand, we have the images obtained by the
g0 EREr ko Gaussian and high pass filters. Thus the main effect is, as
04 1 expected, the filtering of low frequencies and the filtering of
02 1 high frequencies has only a marginal impact.
00 011 0;2 013 014 015 016 0;7 0:8 0:9 ‘I\ 111
freque ncyimaximum original | low pass| high pass| Gaussian|
Fig. 5. Profiles of attenuation used in experiments. Image 1 1.7 1.3 3.7 3.3
Image 2 1.0 2.0 3.3 3.7
Image 3 2.0 1.3 3.7 3.0
2. acut-off removing all frequencies higher thag... /5. Image 4 1.0 20 3.3 3.7
This is multiplication bye—256(z—1/5)*", Image5| 1.0 2.0 3.0 4.0
Average 1.3 1.7 34 3.6

3. ahigh-pass filter which removes low frequencies. This
is multiplication in Fourier space by 4”/(1+10%z%)

The profiles of these kernels are given in Figure 5. The 7. PERFORMING THE MEASURING

values of the coefficients have been chosen so that the im_\Ne first describe some issues for the implementation of the
pacts on the.? norm are comparable. P
I ) ._blur measure.
The resulting images are given at the end of the paper in
Figure 15 and following. In line with the previous experi-

ments, we observe that : 7.1. Estimating the blur
e a strong blur appears after the removal e fre- Recall that the blur of the imaging chain is the (usually
quencies even when the high frequencies were pre- small) difference between the estimated variance of the in-
served; put and output imagés We have computed directly this

evolution of the variance of position in several images after

e the two images with Gaussian filter and high pass fil- repeated convolution with blurring kernels. We have ob-
ter have nearly identical perceptual blur; served that numerical round-off errors can affect adversely
these direct estimations, calling for more sophisticated pro-
cedures which we do not discuss here. On the other hand,

when the kernef of the imaging chain has been estimated
from other sources, it is easy to measure the blur by com-

puting £ (8281§§f + ‘{’257;%’6) at(z,y) = (0,0). TheDxO
Analyzerof DO Labs implements this idea and the resulting

measure is called tHgxU of the image.

e the removal of high frequencies, if it introduces a lot
of defects (ringing is most visible), doest produce
perceptual blurring.

6. PERCEPTUAL STUDY

To make the previous observations more systematical, we
have selected a collection of natural images and applied sev-
eral filters to them and asked six subjects to rank them ac-7.2. Normalizing the BxU
cording to perceptual blur. The images were observed at
resolution 1:1, on the same CRT display, in the same view-
ing conditions (distance, illumination, etc.).

The filters were as above:

Another important issue in the application of the blur mea-
sure is its normalization. The blur measure has the dimen-
sion of a surface. We note that to be able to compare dif-
ferent imaging chains it is convenient to normalize the blur

e none: measure by declaring that the image has a standard size,
e.g.,24 x 36mm? = 864mm?: one therefore multiplies
e gaussian; the blur measure in squared pixels & /N, if N is the

. number of pixels in the output of the imaging chain. The
¢ high pass;

4The variance of a single imager sedepends on its content and does
e low pass. not measure blur.



resulting blur is in squared millimiters. It may also be nec- wish to limit the visible blur to 1 pixé on a 17-inch com-
essary to crop the images if the fields are different. puter screen viewed 50 cm away. This screen corresponds
to a solid angle of abouit37 steradians. If the resolution is
1024x768, then the required maximum bluisis 10~7 sr,

the solid angle under which a pixel is viewed.

Let us give an example of a comparison for a 20 x Now, what is the requirement for producing an equiv-
300mm print of the same scene taken by two cameras. We alent 10x15 cm print made of 1024x768 pixels? Say that
consider two Canon cameras: the 1DS and the 300D, us-such a print will be viewed 40 cm away, occupying a solid
ing the same 17-40mm f/4-L USMwn Canon lense, focal  angle of about.09 sr. Each squared pixel on the print is
length 17mm and aperture 2.8. Sharpening is off for the thereforel.2- 107 sr. Thus one can tolerate a blur of up to
1DS and set to normal for the 300D. The blur is measured4 pixels.

at the center of the image field: Remark.This illustrates the well-known fact that view-
ing an image on a screen is much more demanding than
simply looking at a medium-sized print.

7.3. Prints of given size of a given scene

Cam. | BxU | pixels | field BxU BxU
RAW 200x300mm| Cotr. 7.4. Blur and diffraction
x 10° % x1073 x 1073
Diffraction comes into play at small apertures. We assume
1DS | 1.26 11 100% 6.9 17.5 therefore in the following computation that one can disre-
300D | 1.74 6 20% 174 17.4 gard the effect of the lenses and just consider “pin-hole”
image formation.
Table 2. BxU for two cameras: in raw pixelsin mn? for Let us consider a circular aperture of radius a thin,
200 x 300 prints (of the full field of each camera), in Mm  perfectly conducting plane and a linearly polarized incident
for 200 x 300 prints of crops to same field. plane wave with electric field?(z) = Eye*o* making an

anglea with the normal to the conducting plane. We com-
The lower raw value of the blur for 1DS camera shows ;e the wave diffracted into a direction making a arle
that it gives natively a slightly sharper picture than the 300D \ith the normal to the conducting plane. Lgte the az-

camera when viewed 1:1 on a given screen. imuthal angle of the direction of emission with respect to
What happens now if one looks at the pictures when the |ine of polarization.

printed on a 200mmx300mm format ? We then have to nor- - The Smythe-Kirchhoff vectorial approximation is the

malized the BxU accordingly. Since 300D pictures have recommended approximation for optics according to [13].

less pixels th_an the.ones produ_ced by the 1DS, the zoomy; gives a power per solid angle unit of (eq. (9.162) of [13],
factor, to achieve this format, will be larger for the 300D. page 443):

This results in a BxU for the 300D picture which is now al-
most 3 more times bigger than for the 1DS picture. Since ;p cE? (ka)?
both cameras use the same lens, one can ask: where does JQ T gy raTcosa -cosaT
this difference of sharpness come from? ~-

The sensors in the 1DS and 300D do not have the same normally incident power ,
size. They do not cover the same field. The 1DS has a full 9 9, . 9 2J1(kag)
field sensor (24mm x36mm) where the field of the 300D is X (cos™0 + cos” psin”0) - ‘ ka§ ' @
around 40% of the 24mm x36mm. Now, let us crop the 1DS
picture to the part corresponding to the field of the 300D Wherek = ||ko|| and
and then resize this to a 200mm x300mm format. The two
200mm x300mm prints now correspond to the same scene.
The BxU of the the 1DS print has to be normalized by mul-

L 6 .
tiplying the raw BxU by200x300/(11.10°x40%), which corresponding t@ = 0 which gives the dominant contribu-

gives a value almost equal to the 300D one. This last nor-_. . .
malization allows one to see that these two cameras (usingtlon according to eq. (4). We thus set= 0. £ becomes:

the same optics) in fact have teame qualitywith respect
to blur.

€2 = sin? § + sin? o — 2sin @ sin v cos .

Natural light being unpolarized, it contains the polarization

& =|sinf —sinq|

|0 — o] must be small because of the very large faétom
eq. (4).
Suppose that one wants to deliver the same visual qual-  Assuming thaty is small, we finally obtain, denoting
ity through a range of output devices. For example, one mayby f the distance between the stop and the image plane,

Uniform quality across output devices



& =cosb- ? wherer is the distance between the geometric
image of the incoming plane wave and the considered point.
Thus, the image function of a single point is proportional to
the Airy function:

(1240 ]? . 2war  2mr
A th p = =—
i (‘ ; with p i o

wheren = f/a is the usualf-number.

A key remark is that this function is a rapidly decreas-
ing: Ai(p) < 1073 - Ai(0) for p > 12.4 which corresponds
tor > 12432 ~ 22um for A = 0.5um andn = 22.
We introduce the corresponding cut-off in our computations Fig. 6. Blur at the center of the image field of ****** as a
as follows. Let/A\i(p) = Ai(p) if this value is larger than  function of the lens aperture (A) and focal length (f).
10~ Ai(0) and zero otherwise. The BxU is then given by:

00 > n\3 e
Jo Ailp) (32)" 2mpdp _ N*n? [~ Ailp) p*dp
Jo " Ai(p) 52 2mpdp Am? [ Ai(p) pdp

2
=0.21pm? - \?n? = 0.21 - (’?) pixel’  (5)

if pixels have as? area.

n 2.8 4 5.6 8 11 22
Cameraphong 0.06 | 0.11| 0.21| 0.43 | 0.81 | 3.25| Fig. 7. Blur as a function of position in the image for a
300D 001 | 0.03| 0.04| 0.10| 0.18 | 0.7 | Canon 1DS with Canon EF 16-35mm f/2.8L USM, 16 mm
1Ds 0.006| 0.01] 0.01] 0.04] 0.06 | 0.31 | focal, aperture 2.8, focused at infinity.
Table 3. BxU in raw pixelg for three cameras with
different pixel sizes of 2,8m, 6um and 9ym and various e large apertures present generally more blur, since it
aperture number. is more complex to concentrate light rays away from

lenses centers.
Let us remark that the order of magnitude of these re-

sults could have been predicted as follows. The central disk ¢ small apertures give rise to diffraction as seen in the
of an Airy figure has radius.22 x A x n so one indeed ex- previous section.
pects to see a 1 pixeblur starting atV ~ 14 for a medium

quality digital camera One can also measure the blur locally, by dividing the

image in small subimages. Top quality cameras offer an
We see that, whereas in cameraphones diffraction canapproximately constant quality throughout the image, see
contribute significantly to blur, this is not the case for high fig. 7 (Canon 1DS with Canon EF 16-35 mm /2.8L USM).
quality digital camera except at very small apertures. This degradation in the corner of images is visible in the
small detail in Figure 8.
Cameras found in mobile phone have a much variable

/:5. Bluras afunction of aperture, focal length and po- sharpness, due to obvious constraint of manufacturing:

sition
Let us give some examples of assessments performed on 8. ASSESSING ALGORITHMS

optical devices. Figure 6 illustrates the variation of image

quality depending on the aperture and focal length. One Linear digital processing admit a blur just as well as physi-

clearly sees the existence of a preferred, not extreme apereal optical chains. We first show the effect of standard blur
ture and focal length. Remark that: and sharpening on the blur measure. Then we explain how



BxJ=0.8 BxlU=1.3

Fig. 11 A natural image convoluted with larger and larger
Gaussian kernels (beginning).

Fig. 8. 400x400 bottom left corner of a 4064x2704 image
taken with the same material and setting than with the pre-
ceding figure. We see a strong increase of blur near the
edge, as predicted by the measurements.

BxlU=4 4

BxlU=7 4

Fig. 12 A natural image convoluted with larger and larger
Gaussian kernels (end).

linear zooms can be evaluated from the point of view of
blur - here one has to deal with the discrete nature of digi-
tal images and the underlying sampling. We then exhibit a
linear filter which decreases both the blur and the noise and
investigate the theoretical and practical limits of this “opti-
mizing”.

Fig. 9. Blur as a position in the field for a camera embedded
in a cell phone.

8.1. Blur and filtering

We first blur and sharpen some natural images and see how
the blur measure correlates to the perceptual quality of the
results. The resulting images and blur measures are shown
in Figures 11-14.

<3
.

8.2. Discretized convolutions

X
1ha

piig

.t .

We refer to [25] for background on convolution as interpo-
lation. We represent digital images, »cz by distributions

u =3 . UmnOmn). A discretized convolutiorC is a
mapL : u — v with

v="=C1 - (uxg)

Fig. 10. Photograph taken with a cell phone. whereC,; = Zm,n 8(m.n) is the Dirac comb representing
the sampling ang : R? — R is some kernel. We assume



BxlU=3

Fig. 13 A natural image.

BxlU=123

Fig. 14 The natural image above after a sharpening.

the kernel to be normalized and centered:
Z w(m,n) =1and Z me(m,n) = Z ne(m,n) = 0.
We define the blur of such a transformation to be:

B(L) = (n* +m”)p(n,m).

n,m

Thus,B(L) reflects the “quadratic size” of the spot diagram
of £ in the following sense. &2 is the blur of the rendering
device (say the quadratic size of the pixels of a screen), then
B(L) + o2 is the variance of the position in the image gen-
erated byL and the underlying device from an image with
just one white pixel. Said differentl(L) is the increase in
blur when the convolutiorf is applied before transmitting
the image to the given rendering device.

Such a formula is an obvious discretization of our theo-
retical blur measures. Additivity still holds in this discrete
setting:

B(Ls 0 L) =B(Ly) + B(L2)

Indeed, assuming a one-dimensional image for simplicity of
notation, the kernebs of £, o L3 is given by:

sz m)e1(n —m)

and

B(L1)+B(Ls) = Z(m2 +(n—m)*)@2(m)p1(n—m)

= Z(n2 + 2m? — 2mn) @ (m)p1 (n — m)
Using that

S eilm = k) =1, Y mpi(m — k) = k
we see: . :
S nfea(m) 3 gl = m) = 3 maim)
and
> mpa(m) Y mpsln =) = 3 mpa(on
Therefore

B(L1) + B(Ly) anz m)g1(n—m) = B(Ly o L)

This proves additivity.



8.3. Application to linear zooms

We show how the blur measure can be applied to study lin-
ear zooms. To keep this illustrative section simple, we shall
make some approximations that are valid for large zoom
factors (see eq. 6). A definitive study would require doing
the discrete computations explicitely.

In the above formalism, a linear zoom of factor- 1 is
amapZz : u +— v with

v="=C1 - Dy(uxp)
where® (1)) = A=2)(- /A, -/A). Thatis,

Vgo = Z A 2p(k/X—m, L)\ —

m,n

1) Um.n
We again define the blur to be the quadratic size of the cor-
responding spot diagram:

S K+ )N (kA L))

k¢

B(Z) =

If \islarge, then

B(Z) ~ / (2 + )z, y) dady.

This notion is approximately additive. Let us prove that
B(Z o 2') = B(Z) + B(Z’) under reasonable hypothesis,
eq. (6). Writingv Z'(u) and w Z(v) and again
pretending that there is only one dimension for simplicity,

W, = Z)fl(p n/\ —m)oy,
= Z (W)

o(n/X—m)' (m/N — k)ug

= OV (/AN = k)uy,
k
with
©"(n/IN — Zap n/A—m)e (m/\N — k)
m
= > /A= Nk—NM)g' (M)
MezZ/N
with M = m/\ — k. SettingN = n/A\ — k, we see that

the above equality holds if, for alV € Z/AN:

'(N)= >

MEZ/N

P(N(N = M))¢' (M)

A computation entirely similar to the one for composition
of discretized convolutions proves the claim provided that,
for = = A, )/, we have the normalization and centering:

> em)~1and Y ne(n) = (6)

neL/z neL/z

Example

We consider zooms of the above fo#R ( f)
) for:

=C1- D) (ux

1. (piecewise constani)(z) = 1;_1/2,1/2;

2. (pieceiwse linearp(x) = 1;_y 4(1 — |=|);

3. (bicubic)p(x) = (a + 2)|z|> — (a + 3)|z|*> + 1 for
|z| < 1,alz|® — 5alz|? + 8a|z| — 4a for 1 < |z| < 2

andy(z) = 0 for |z| > 2.

For large zoom factordj(2,) ~ 2 [ 22p(z) dz and we
obtain:

1. 1/6 for the piecewise constant case;

2. 1 for the bilinear case;

3. (8a + 4)/3 for the bicubic case. It is zero far =
—1/2, the much used bicubic interpolation scheme of

Keys [15].

Consider an imaging chain made of a camera with blur
o? (in squared pixels) and a screen with bégr (in mm?)
so that the resulting blur is

0'2 =

k(Soi + o3)

in steradian ifS is the surface of a pixel on the screen and

is the solid angle corresponding to a unit of surface on the
screen.

We now insert one of the above zooms with blgiand
scale factor of\ just before the screen in this same optical
chain. The blur of the imaging chain becomes:

0% = k(A\?S(0? + B) 4 03)
Comparing with a pure rescaling (i.e., a closer look to the
same screen) for which the blur would beconfe? we
have:

2

02 = X202+ XN?k(SB — (1 — A\ ?)a3).

We see that

o for the piecewise constant zoofB ~ o3, hence
the effect is about the same as looking closer at the
screen —we have just “painted” big pixels using the

small screen pixels;

for the bilinear zoom the blur is significantly increased
as it is expected;

for the bicubic zoom only the camera blur is multi-
plied by A, but the screen blur stays the same.



One could ask whether a zoom with negative blur would not
be even better but it is obvious that blur does not, by itself,
capture all the quality of a zoom and misses some defects
like blockiness, ringing or saturation. Indeed, a zoom which
would just insert black pixels would be best if minimizing
blur was the only criterium. Nevertheless, we think that
the blur measure has a role to play in a theory of “optimal
zooms” as developed in [25].

8.4. Linear filtering of blur and noise

We investigate in this section the relationship between blu
and another image defectoise We consider here additive
noise, that is, the observed image is the ideal image plus §
random image. The noise level is measured as the variand
of the grey level of a pixel of this random image.
One often considers that there is a direct trade-off be-
tween reducing noise and reducing blur. It is expected that
sharpening will blow up noise and, conversely, that the re-
duction of noise requires smoothing which inevitably add
blur. We prove in this section that things in fact are more
complicated. One can indeed decrease both blur and noisét multiplies the noise by /9 without increasing blur (one
by a linear filter. However, another kind of defect will ap- could obviously decrease the noise a little less and actually
pear, so that it is not clear how to take practical advantagedecrease the blur).
of the previous remark. We present a natural image (Fig. 15) and its “optimized”
version obtained by applying four times the above 3x3 filter.
One sees that the simultaneous removal of blur and noise
has in fact a cost: the image becomes “textured”.

Fig. 15. A natural image.

8.5. Improving both noise and blur

Consider the following discrete kernel:
9. CONCLUSION

In this paper we have shown that once one writes down a
minimum list of reasonable mathematical properties that a
useful blur measure of imaging chains should possess, there
is aunique theoretical solution: theariance of the posi-
tions in the kernel.

This variance had of course been considered in many
related problems, e.g., blind deconvolution or depth esti-
mates from blur (see for instance [20, 16] and the references
therein) — or showed to be strongly correlated with other
seemingly distant blur assessments both objective and sub-
jective [19]. But our resultis independent of any assumption
on the blur kernel (which we do not need to estimate and
which maybe far from Gaussian). In fact, the main point of
this paper is to give a unigue coherent extension to arbitrary

QO S0

b
a
b

QO S0

We assume that the optical chain is definedwy—
K «u+ n whereK is a normalized kernel andis an im-
pulsional noise with grey level random variancg i.e., an
array of i.i.d. random variables with meamand variance->
(to make the analysis easier). The blur added by the optical
chain isB(K), which is4b 4 8c. A straightforward compu-
tation shows that the random variance of the grey levels in
the processed image i8?(a? + 4b% + 4c?).

We assumeX to be:

e normalized:a + 4b + 4c = 1;

e non bluring:4b + 8¢ = 0; kernels of the obvious blur measure for Gaussian kernels
which are generally assumed in most of the literature.

e noise reducinga? + 4b2 + 4c* minimum. The uniqueness we obtain offers a potential bridge be-
tween our mathematical approach and psychophysical blur.

The best choice is therefore: Experiments presented above and the use of the resulting

“1/9 29 —1/9 measure by professionafs which previously used other,

2/9 5/9 2/9 5DXO Analyzer of the DXOLabs company.
-1/9 2/9 -1/9 5Photograph magazines like [7, 18] and mass retailers [10].
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Fig. 17. A natural image.

Fig. 18 Natural image convoluted with a Gaussian kernel. Fig. 20. Natural image with high pass filter.



