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Abstract

Nowadays, cameras are widely used to detect potential ob-
stacles for driving assistance. The safety challenges have pushed
the automotive industry to develop a set of image quality metrics
to measure the intrinsic camera performances and degradations.
However more metrics are needed to correctly estimate computer
vision algorithms performance, which depends on environmental
conditions. In this article we consider several metrics that have
been proposed in the literature: CDP, CSNR and FCR. We show a
test protocol and promising results for the ability of these metrics
to predict the performance of a reference computer vision algo-
rithm that was chosen for the study.

Introduction

Nowadays, cameras are widely used to detect potential ob-
stacles for driving assistance. Image quality metrics are currently
being standardized for automotive applications [1]. These metrics
measure individual camera degradations intrinsic to the camera.

Computer vision algorithms performance is also linked to
environmental conditions, for example fog can reduce the con-
trast. There is a need to develop and test metrics specific to com-
puter vision algorithms. Two new metrics have been proposed
and are under discussion in the IEEE-P2020 working group, Con-
trast Detection Probability (CDP) [2, 3] and Contrast Signal To
Noise Ratio (CSNR) [4]. These two KPIs evaluate the camera
performance in terms of object detection, based on the contrast
probability distribution function.

While detecting objects is rather recent in the automotive
world, it has existed for a long time for surveillance cameras and
military applications. In these domains, the Jonhson criterion [5]
is widely used to evaluate the range capacity of a camera, in the
Detection Recognition Identification (DRI) approach. This cri-
terion is based on resolution and environmental conditions. De-
tection means that the camera is able to detect that an object is
present in the scene. Recognition means that the camera is able
to find the class of object (is it a person or a car). Identification
means that the camera can precisely identify the object (model of
the car). A new metric, Frequency of Correct Resolution (FCR),
has been proposed based on this DRI approach [6, 7].

In this article we evaluate the performance of the above listed
KPIs for computer vision applications. We define a computer vi-
sion metric evaluation and validation protocol, in the same way as
we perform perceptual analysis for human viewing applications.
We choose a common computer vision application: license plate
detection [8, 9]. The goal of the study is to determine whether
each metric can predict the success rate of the license plate recog-
nition algorithm on a given imaging system. This will allow us to
compare the metrics and determine which ones are best suited for
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(a) Ideal Case

Figure 1. Two gray patches, with and without noise.

qualifing devices for computer vision applications.

Computer vision metrics
CDP and CSNR
Contrast Probability Distribution Function

Contrast is an important parameter for object detection. It
measures a luminance change between two regions of interest
(ROI), relative to the average luminance. We consider two ideal
uniform patches A and B, as presented on Figure 1(a). There are
several ways to define the contrast between A and B in the litera-
ture. Two common definitions are Michelson Contrast and Weber
Contrast:

* Weber Contrast is often used when detecting a small object
A on a uniform background B. In this case, the average lu-
minance of the scene is approximately the luminance of the
background. Weber contrast can take very large values when
xp gets close to 0.

b =] (1)

XB

Michelson Contrast is used when comparing two objects of

the approximate same size. Unlike Weber Contrast, Michel-

son contrast is symmetrical:

Weber Contrast =

x4 — xp]
XA +XB

Michelson Contrast =

(€3

On real images, due to noise or other effects, pixels corre-
sponding to a given luminance value in the scene do not all have
the same gray level value. As seen in Figure 1(b), noise makes it
harder to distinguish between the two patches compared to Fig-
ure 1(a), even though the average value has not changed. Given
this, instead of a single contrast value between the two patches,
we can compute a different contrast value for each pairs of pix-
els. Thus we define the contrast Probability Density Function
(PDF)(Figure 2). The PDF can be computed using either Michel-
son or Weber contrast.
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Figure 2. Contrast Probability Density Function (PDF) computed from two
gray patches with noise

CDP

Contrast Detection Probability (CDP) quantifies the ability
of a camera to preserve accurately an input contrast in an image.
Mathematically, CDP is defined as the probability that the mea-
sured contrast falls within a confidence interval centered around
the nominal input contrast:

CDP =Pr[C;, - (1-8_) < Cmeas < Gy, - (146)] 3)

where Cj,, and Cmeas are respectively the input contrast in the
scene and the measured contrast in the image. And 6_ and 04
are the parameters defining the lower and upper bounds of the
confidence interval presented in Figure 3, 6_ and J, can be the
same.
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Figure 3. Confidence interval of the contrast PDF

CSNR

Contrast Signal-to-Noise Ratio (CSNR) quantifies the ability
of a camera to distinguish two objects, or distinguish an object
from its background. Its computation is similar to that of SNR
and is based on the measured contrast probability statistics:

“

where C and o¢ are respectively the mean and the standard devi-
ation of the contrast between two patches as shown in Figure 4.
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Figure 4. Mean and standard deviation of the Contrast PDF
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Theoretical observations of CDP and CSNR

CDP and CSNR are two quality metrics, based on contrast
and noise. CDP considers that contrast fidelity is based on the
contrast of the image being close to the contrast on the scene,
within a confidence interval. CSNR assumes that object separa-
bility is based on a low level of noise compared to the contrast in
the image.

Since CDP is a probability value, it saturates at unity. CSNR
does not saturate and can provide information when patches are
close to saturation. However CSNR is not defined when two
patches are both fully saturated. Unlike CDP, CSNR is not de-
fined or can take very large values when the standard deviation of
the contrast PDF is close to zero. If we consider a patch that is sat-
urated to the dark level, and a patch that is saturated to the white
level, the contrast between the two patches is large and they can
easily be separated by a computer vision detection task. However
CSNR cannot be measured between these two patches.

CSNR describes noise processes using the mean and the
standard deviation that are a synthetic description of the contrast
PDF. The contrast PDF may not always be Gaussian, in this case
the mean and standard deviation are not sufficient to describe ac-
curately the noise process. CDP uses directly the entire contrast
PDF in order to use the real dispersion due to noise. The bounds
of the confidence interval should be fixed for CDP by the user and
take into account the tolerance of a given application of the cam-
era under test. No confidence interval on contrast PDF is needed
for the CSNR computation.

CDP compares the measured contrast to the input contrast.
Therefore performing image linearization is mandatory before
the metric computation, to inverse all non-linear operations per-
formed by the ISP. CSNR can be computed without image lin-
earization since CSNR does not evaluate the fidelity of the repro-
duced contrast to the input contrast. Thus, CSNR can be used to
test ISP performance.

FCR

CSNR and CDP do not include the frequential aspect of the
detection problematic, thus we introduce Frequency of Correct
Resolution (FCR) proposed by Landeau [6, 7] that examines the
contrast degradation as a function of the size of the object. FCR
reflects the ability of the camera to reproduce details and textures
with fidelity.

FCR computation is based on a multi-scale fractal test target
shown in Figure 5(b). Each scale represents a spatial frequency
and is made of randomly rotated Corner-Point patterns shown in
Figure 5(a). We can distinguish two types of Corner-Point with
four possible orientations for each type.

The goal of the FCR computation is to find the maximum
scale correctly recorded by the camera. To do so, we compare
scale by scale the test image to the ground truth. For each scale, a
score called Probability of Correct Response (PCR) is computed
to quantify the similarity of the recorded Corner-Point patterns
with the reference ones:

21
PCR(s) = % - ) score(i) )
i=0

where s is the scale and score is a function that outputs in the set
{—1,-1/3,1/3,1} depending of the level of resemblance of the
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(a) 2 types of Corner-Point
pattern

Figure 5. Multi-scale fractal chart generation from randomly rotated pat-
terns
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Figure 6. PCR score computation

test patterns with the reference ones (see Figure 6). We notice
that a PCR score of 100% is attributed to a scale if all Corner-
Point patterns of the considered scale are correctly recorded by
the camera.

For each scale s from 2 to the maximum scale, we can define
a corresponding spatial frequency in cycles per pixel, depending
on the total width W of the chart in the image:

2(s—1) ]

f= W cy/pix (0)

The multi-scale analysis leads to a PCR curve in Figure 7 that
represents the ability of the camera to preserve the input contrast
as a function of spatial frequencies. From the PCR curve, we can
define the Frequency of Correct Resolution (FCR) (see Figure 7)
that is a spatial frequency characterizing the resolution limit of a
camera in terms of contrast detection, with respect to a detection
threshold. A PCR threshold of 50% was chosen by the original
author, so FCR is the maximum frequency that gives a PCR of
50%:

FCR = max { f|PCR(f) > 50%} @)

Reference Computer Vision Application

If we want to validate a full system with a camera and a
computer vision algorithm, and find its limits, a very large number
of images of natural scenes is required. When testing the same
algorithm with a different camera, the whole work would have
to be repeated. The goal of our study is to find an easier way to
validate this kind of systems. We want to link the performance
of computer vision algorithms to metrics that are easy to measure
from a single target chart in a laboratory environment.

To do so, we have to select a reference CV algorithm that
represents the final DRI task, then study the correlation between
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Figure 7. PCR curve with the defintion of FCR.

the metrics and the performance of the full system (camera and
computer vision algorithm). The algorithm should be generic,
commonly used, public and free to use, easy to shoot in labora-
tory, and with a well defined ground truth.

We chose an Automatic License Plate Recognition (ALPR)
algorithm proposed by Silva ef al. [8, 9]. It is a modern and
common application, using neural networks, and easy to test in
a laboratory, with images of license plates. The complete ALPR
pipeline includes several steps: car detection, license plate de-
tection and Optical Character Recognition (OCR). The final pur-
pose of this study is to discriminate among imaging systems based
on their performance on computer vision algorithms. Now, the
task of detecting and isolating the license plate in the scene is in
general a function more of the shooting conditions (distance of
the plate from the camera, perspective, illumination, etc.) and
not very discriminating to qualify the imaging system itself. We
therefore decided to focus our attention on the more discriminat-
ing aspect of the pipeline, i.e., reading the characters on the plate.
We assume that the position of the license plate in the image is
known, and only focus on the OCR.

The OCR algorithm uses a modified YOLO network. Since
YOLO is aimed to detect any kind of object, it had to be tuned
by the authors [9] to adapt it to license plate (LP) recognition use
cases. In particular, the input and output aspect ratio and granu-
larity are adjusted to work with license plates. It has been trained
on license plates from different regions around the world (Brazil,
Europe, United States, and Taiwan). In this article we will use
simple license plates following the French license plates format,
with 7 characters in total (two letters, three digits, two letters). An
example can be seen on Figure 9

The OCR algorithm returns the list of detected characters
from an input image of a license plate. For our application, we
consider that a license plate has been correctly recognized if all
characters from the input image have been correctly recognized.
We use the recognition rate as the indicator of performance of the
OCR, defined for a set of different license plates as:

Number of recognized LPs

R ition Rat =
ecognition Rate (%) Total number of tested LPs

(3

Experimental analysis

The goal of this experimental analysis is to compare the met-
rics previously defined (CDP, CSNR, FCR), and see which one
can better show the limits of the tested camera from the point of
view of the chosen computer vision algorithm. This will allow us
to know which metric is best at predicting the performance of a
full system, with a camera and a computer vision algorithm.
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Figure 8. Definition of period and frequency
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(b) License plates with differ-
ent luminance and contrast

Example of images used for CDP, CSNR and OCR, with SNR

(a) Grayscale used for CDP
and CSNR

Figure 9.
max 28 dB.

Simulation framework

This analysis requires to capture a very large number of im-
ages. For this reason, we have preferred to work only in sim-
ulation. Indeed, the computer vision algorithm needs to run on
several images with different characters to get reliable statistics
on results. Since we also need to test different resolutions, lumi-
nance levels and contrasts, this means that a very large number of
images is required to test a single camera.

We have used a simple 8 bit single channel camera pipeline
to generate different quality of images, applied in the following
order:

1. Framing: Different size of the target in the image.

2. Exposure: Fixed exposure for all images.

3. Lens: MTF blur, with different cut-off frequencies, cor-
responding to different qualities of cameras, or different
shooting conditions.

4. Sensor: White Gaussian Noise with different SNR curves,
corresponding to different qualities of cameras, or different
shooting conditions. In the results, the different noise curves
are represented with their maximum SNR value.

5. ISP: Denoise (Gaussian kernel) and sharpen (unsharp mask-

ing).

The size of the target in the image can be defined in terms of
spatial period. We define the period as the size of an FCR Corner-
Point pattern at the considered scale, or twice the size of a line of
an OCR character (see Figure 8). Note that CDP and CSNR are
statistical measurements on nominally uniform gray patches, they
are not impacted by resolution and MTF blur. Therefore for these

" ..
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= 0.50 cy/pix

= 0.25 cy/pix

Figure 10. FCR chart and license plates, with different MTF applied
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Figure 11. FCR chart and license plates, with different noise levels applied
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Figure 12. Results of CDP, CSNR and recognition rate for a camera with
maximum SNR 43dB

measures the “Framing” and “Lens” steps have been omitted.

CDP and CSNR are measured on a grayscale chart with a
constant Michelson Contrast of 6% between patches, and lumi-
nance from 50 to 30000 cd/m? which is enough to cover the
whole dynamic range of the simulated 8 bit sensor. By taking
patches two by two on this chart, we get 3000 different combina-
tions of luminance and contrast.

To make a comparable database of license plate images, we
had to generate license plates with different contrast between the
background and the characters, and different average luminance.
Thirty different license plates were used for each conditions, and
230 different combination of luminance and contrast have been
used to compare with CDP and CSNR. This leads to a total of
7000 images of license plates needed to compare to a single image
of grayscale chart. Examples of generated grayscale chart and
license plates with different luminance and contrast can be seen
on Figure 9.

We have generated an FCR chart with a contrast value of
15%, and have generated a database of license plates with the
same contrast. Figures 10 and 11 show examples of generated
FCR charts and license plates with different image degradation.

Predicting the performance of OCR recognition
rate with contrast based metrics (CDP and CSNR)

We used our simulation framework to determine whether
CDP and CSNR can predict the performance of the reference
computer vision algorithm. The results for the reference computer
vision algorithm are recognition rate of the OCR. The results for
CDP are computed with 61 = §_ = 0.1 (see Equation 3). CSNR
is presented both with original and thresholded values. Figure 12
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Figure 13. Results of CDP, CSNR and recognition rate for a camera with
maximum SNR 13dB

presents performance maps for each KPI, for a camera with high
maximum SNR (43dB). Each dot on the map represents a proba-
bility of detection for a given luminance and contrast.

CDP, CSNR and OCR recogition rate show a similar behav-
ior. As expected, they all show good performance for high con-
trast and high luminance values, and drop to zero for low contrast
and luminance values. We can see some differences between the
CDP and CSNR. CDP saturates to 1, it does not show the per-
formance of the camera above a certain limit. Instead, it shows a
large contrast and luminance area for which the camera behaves
well.  On the contrary CSNR does not saturate and highlights
smaller areas that correspond to the very best behavior of the cam-
era. The OCR recognition rate also saturates to 100% on a large
area, therefore it looks more similar to CDP than CSNR, and we
can say that CDP is better here at predicting the performance of
the computer vision algorithm. Jenkin [4] has shown that when
applying a threshold on CSNR, we can obtain an approximation
of CDP. This is what we can see here, thresholded CSNR looks
good at predicting the performance of the computer vision algo-
rithm. However this has not been demonstrated theoretically and
there is no easy way to choose a threshold.

Figure 13 presents results of the same metrics, with a cam-
era with a lower maximum SNR (13dB). As expected, all metrics
have worse performance for lower SNR values. All previous ob-
servations remain valid for the lower SNR.

Note that the OCR results presented here have been com-
puted with a period of 8 pix/cy for the characters (see Figure 8
for the definition of period). With this size of characters there is
100% recognition rate for a large contrast and luminance area at
maximum SNR. We have also tested other size of characters. In
Figured 14 and 15 we can see that the behavior of the computer
vision algorithm depends a lot on the size of characters, and does
not follow as well the behavior of CDP and thresholded CSNR
for all sizes of characters.

To make a more quantitative comparison, we can use the
Pearson Correlation Coefficient [10], defined for two random
variables X and Y as:

pPxy=———"" &)
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Figure 16 presents the Pearson Correlation Coefficient be-
tween CDP and OCR recognition rate, and thresholded CSNR and
OCR recognition rate, as a function of SNR values, for different
size of license plate characters. We can first look at the results for
a period of 8 or 16 pix/cy, since it is not too challenging for the
OCR algorithm. We can see that all correlation values are above
80%, which means that CDP and thresholded CSNR have a good
correlation with the OCR recognition rate. With a period of 4
pix/cy and low SNR, the correlation values are lower. This can
be expected from the fact that this is a more difficult task for the
OCR, due to the small size of the license plate characters.

CSNR allows to identify a small area with the best camera
performance. If we know precisely the luminance and contrast of
the objects we want to detect, CSNR is a good measure to know
if a camera will work for this application. However in real scenes
the luminance and contrast values are diverse. CDP and thresh-
olded CSNR allow to identify a wide area where the camera can
perform good for most applications, which seems more useful in
practice.

Predicting the performance of OCR recognition
rate with FCR

As seen in the previous section, resolution cannot be ignored
when looking at the performance of a computer vision algorithm.

ol
@

e
o

14
S

—e— CDP vs OCR (period 4pix/cy)
-k~ Thresholded CSNR vs OCR (period 4pix/cy)
CDP vs OCR (period 8pix/cy)
Thresholded CSNR vs OCR (period 8pix/cy)
—e— CDP vs OCR (period 16pix/cy)
-k~ Thresholded CSNR vs OCR (period 16pix/cy)

Pearson Correlation Coefficient

o
N

15 20 25 30 35 40
SNR max (dB)

Figure 16.  Pearson Correlation Coefficient (9) between CDP and OCR
recognition rate, and CSNR and OCR recognition rate, as a function of SNR

values, for different size of license plate characters.
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We have defined the frequency of license plate characters in
the same way as we have defined frequency for FCR (Figure 8).
To have a metric comparable to FCR, we consider the maximum
frequency where 50% of the license plates of the database can be
correctly recognised. Figure 17 shows a comparison of the max-
imum resolved frequency both for FCR and OCR, for different
noise and blur levels. Smaller maximum frequency means worse
performance. The luminance and contrast is the same for the FCR
chart and for the license plates.

As expected, both KPIs have better performance for lower
noise and lower blur values. The FCR performs better than the
OCR. This can be explained by the fact that in general several
periods are needed to detect a character, whereas a single period
is necessary to detect an FCR pattern. When looking at the ratio
of the two metrics (Figure 18) we can see that the ratio is be-
tween 2 and 4, which seems a reasonable ratio when comparing
the total size of a character to its line width. This shows good cor-
relation between FCR and maximum resolved frequency of the
OCR, meaning that FCR can predict the results of the reference
computer vision algorithm.

Conclusion and future work

In this article we have presented a simulation environment
that allowed us to test and compare CDP, CSNR and FCR, and
see which one can best predict the performance of a full system,
with a camera and a computer vision algorithm.

‘We have seen that CDP and CSNR show similar results, and
the same limitations, though with small differences. CSNR has
been linked to detection theory [4] and our results show that this
metric can highlight the very best performance area of a camera,
which can be useful for some difficult computer vision tasks. CDP
is more empirical but it has shown to better follow the behavior
of the tested computer vision task. CSNR can be thresholded to
produce results similar to CDP. CDP seems easier to interpret be-
cause the CDP threshold used is based on the contrast in the scene.
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However, little study has been done on the choice of thresholds for
CDP or CSNR.

Our results also show that frequency is important when eval-
uating a computer vision algorithm. For this reason we have
started to test FCR, that include both contrast and frequency. We
still have limited results but they show a good correlation with the
reference computer vision algorithm.

The next step will be switching from simulation to real lab-
oratory testing for the comparison work using several cameras.
Many challenges are identified. Firstly, the FCR computation
calls for a high precision image registration algorithm of the test
image with the reference one. Secondly, an optimized test proto-
col needing a minimum number of images should be defined for
the comparison, since many images of license plates are required
to generate significant statistics for the reference computer vision.

Then the ultimate goal is to design a new set of metrics. On
the one hand, CDP and CSNR are dedicated to study the contrast
reproduction over the entire dynamic range of the camera, and on
the other hand, FCR has the advantage to provide the ability of a
camera to distinguish fine details and preserve texture. So a new
metric seems to be necessary to gather all important aspects to
evaluate the capability of a camera to perform a DRI task.
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