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Abstract 
The wide use of cameras by the public has raised the interest 

of image quality evaluation and ranking. Current cameras embed 

complex processing pipelines that adapt strongly to the scene 

content by implementing, for instance, advanced noise reduction or 

local adjustment on faces. However, current methods of Image 

Quality assessment are based on static geometric charts which are 

not representative of the common camera usage that targets mostly 

portraits. Moreover, on non-synthetic content most relevant 

features such as detail preservation or noisiness are often un-

tractable. 

To overcome this situation, we propose to mix classical 

measurements and Machine learning based methods: we 

reproduce realistic content triggering this complex processing 

pipelines in controlled conditions in the lab which allows for 

rigorous quality assessment. Then, ML based methods can 

reproduce perceptual quality previously annotated. In this paper, 

we focus on noise quality evaluation and test on two different 

setups: closeup and distant portraits. These setups provide scene 

capture conditions flexibility, but most of all, they allow the 

evaluation of all quality camera ranges from high quality DSLRs 

to video conference devices. Our numerical results show the 

relevance of our solution compared to geometric charts and the 

importance of adapting to realistic content. 

Introduction 

In the past few years, the use of videoconferencing has exploded. 

This builds on the widespread usage of selfie photos so common in 

social media, giving a lot of attention to portrait rendition. To 

match the expectations of the market, camera providers are 

developing dedicated portrait pipelines that apply a different digital 

treatment to the face region and to the background. Therefore, 

camera evaluation techniques cannot continue to be the same: we 

need new evaluation methods that take into account the context of 

the scene.  

Deadleaves [9][10] and OECF charts have proven to be rich charts 

to evaluate texture and noise attributes for classical cameras where 

the image processing pipeline is well defined and understood, such 

as DSLR cameras in manual mode for instance. With such charts 

and cameras, analytical noise estimation methods such as the 

ISO15739 Visual Noise can be computed on uniform patches and 

correlate well with perceptual quality assessment of noise on 

various content, under the same capture conditions. However, we 

know that current smartphone cameras are using more complex 

pipelines that adapt to the content of the scene, that is to say, the 

capture parameters and digital algorithms applied will not be the 

same for a portrait, a natural scene or synthetic geometrical 

content, even under the same light conditions. 

 

Uniform Patches vs Portraits. In Figure 1, we show how the 

same devices behave differently regarding noise rendition 

depending on the content of the scene. For every device, we 

capture with the selfie camera, under the same light conditions 

(100lux and 20Lux, 45 cm distance from the object) the 

Deadleaves chart and two realistic mannequins. We crop the 

relevant areas on each image, that is, flat regions for the 

Deadleaves and the forehead for the mannequin (see Figure 2). To 

compare fairly, we select for each image the uniform crop on the 

Deadleaves chart with lightness L* the closest possible to the 

lightness L* of the crop of the forehead of the mannequin. On the 

Deadleaves crop we compute the Visual Noise mapped to a JND of 

noisiness scale such as described in [8]. The lower the value the 

lower the perceived noise. On the other hand, we annotate the 

image quality noise rendition on the mannequin’s crop in quality 

units (‘Just Objectionable differences’, see next section for more 

details). Viewing conditions during the annotations are the same 

(image viewed with a cutoff frequency of 30 cycles per degree). In 

the noise annotation on the realistic mannequins, the lower the 

value the greater the perceived noise. The perfect correlation line 

between these two metrics is displayed in grey. The blue and 

orange dots show the camera quality range of different devices at 

respectively 100Lux and 20Lux. Note that since the viewing 

conditions and the scale of annotations are similar, the slope of the 

grey line is one (absolute value), but the offset is arbitrary. 

As we can see, most devices are aligning on the line, meaning that 

the relative perception of noise on the forehead of the mannequin 

and on a uniform patch is similar. However, some devices are a bit 

further from the line, which indicates that the devices have 

different noise rendition depending on the content of the scene. 

 

 
Figure 1. Noise perceptual evaluation on portraits vs noise 

estimation on the Deadleaves flat patches under the same viewing 
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conditions. The grey line shows the perfect correlation between 

both measures. 

Let’s observe the different case for these non-aligned devices. In 

Figure 2, we can take the extreme case of MeituV6 (in a red circle 

on Figure 1). On the flat patches of the Deadleaves, we can 

observe noise, but this amount of noise is not visible on the 

mannequin which has been extremely denoised.   

On the other hand, in Figure 3, the images produced by the Device 

A (yellow circle in Figure 1), are fairly clean on the Deadleaves 

flat patches (see upper image in Figure 3) but present over 

sharpened noise artifacts that were considered as more 

objectionable on the forehead crop (see lower image). 

Finally, in Figure 4, we can observe the images produced by the 

iPhone13 (green circle) on the two charts: noise is quite visible and 

objectionable on the flat patches of the Deadleaves whereas it was 

judged much more acceptable on the forehead, probably because of 

its nature: a fine grain luminance noise which does not interfere 

with mental representation of fine details of the skin on the 

mannequin.  

 

 
 

 

 

 

 

 

This motivates us to develop content-aware noise quality 

estimations based on perceptual evaluation of such type of images. 

In order to adapt to this diverse content, we propose to tackle the 

perceptual evaluation of noise using Machine Learning (ML).  

In this work, we focus on realistic mannequin setups (see figures 2 

and 3) that are representative of a real-life portrait situation. The 

advantage of using mannequins instead of real human models is 

that the capture conditions can be fully reproduced. 

As for all ML solutions, we need to construct a perceptually based 

annotated data set of images, which is highly challenging since it 

needs to cover all the camera quality ranges. Moreover, evaluating 

noise on textured areas (namely face attributes) is not evident since 

its perception can change depending on the size of the image and 

the viewing conditions. 

 

 
 

 

 

 

 

 

 

Novelty. The use of ML models for noise quality assessment was 

proposed in [5] although they did not study the case for portraits 

and 3D mannequins which is an important use case due to the 

increase of video conferencing. The use of ML models to estimate 

the image quality was also used for realistic mannequins in the 

context of detail preservation in [6].   

 

This paper proposes a new measure for noise quality assessment in 

realistic controlled portrait scenarios based on Machine Learning 

methods. This problem is of fundamental importance given the 

current popularity and impact of selfie pictures and videos in social 

media, as well as the increased usage of video conferencing.  

Method 

The first step in the construction of an ML-based solution is 

always the creation of a relevant database for training and testing. 

The training data set allows the algorithm to learn from the 

examples, while the testing set provides an estimate of how well 

the algorithm behaves in production, that is, on unseen images 

during training. The content of the database implicitly defines the 

requirements of the model. 

Image database construction. The goal of this study is the 

assessment of perceptual noise on realistic mannequins’ setups on 

Figure 2. MeituV6 capture of the Deadleaves chart (upper image) 

and a crop of Sienna realistic mannequin (lower image). Both 

crops are 800 by 400 pixels. Even though the images were 

captured in the same conditions, the Deadleaves chart displays 

much more noise. This illustrates how the noise rendition depends 

on the content of the scene. 

Figure 3 Apple iPhone13 images taken under the same conditions. 

Noise is visible on the flat patches of the Deadleaves (upper 

image) and the forehead of the mannequins (lower image). On the 

forehead, the noise has been judged as less objectionable, 

probably due to its fine grain luminance nature that does not 

interfere with the expected texture of the skin. 
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an extended range of image qualities. This range of qualities is 

characterized by the introduction of different quality devices such 

as DSLRs, smartphone and video conference (i.e. laptop camera, 

tablets) in the image dataset, but also the use of variable shooting 

conditions (i.e. distance, lighting condition). Since we want to 

observe noise on a scale dependent content (a face), and compare 

devices between each other’s with equivalent framing, the 

annotation of images requires a re-scaling so that the contents are 

displayed at the same size. However, applying strong rescaling 

factors to an image with low resolution is sometimes not 

meaningful, as it will also impact the visual perception of noise, 

leading for example to trivial image comparisons. 

This makes the perceptual evaluation of noise a complex and 

challenging task. To overcome trivial comparisons between images 

of different frequency levels, we propose to split our database into 

2 subsets with respect to the size of the face in the image. This 

categorization can also be interpreted as a partition between two 

viewing conditions, one for high quality (HQ) images and the other 

for low quality (LQ). We propose to assess the noise on different 

regions of interest: for high quality images, we will focus on the 

forehead area of the realistic mannequins, while on the lower 

quality subset, we will rather concentrate on the whole face area in 

order to maximize the frequency information pertinent to 

evaluating the perceived noise (see Figure 4 and 5 for an example). 

 

 
 

 
Figure 5. Example of Low-Quality Video Conference samples. 

From the complete setup (upper image) two Regions of Interest 

(ROI) are extracted, one for each mannequin. 
 

 

 
   Figure 6. Example of a pairwise comparison task done by 

annotators.  

 

Perceptual annotations and scale quality construction. To 

obtain quality labels, we need to collect perceptual evaluations. 

The goal is to generate a psychophysical image quality scale. The 

observer is asked to estimate the image quality by analyzing its 

amount of noise, compared to a mental representation of the ideal 

image. However, evaluating the image quality in an absolute 

manner (without reference or comparisons) is a complicated task, 

and usually requires the opinion of a large group of observers. One 

of the most precise approaches is pairwise comparisons, where one 

can infer quality scores using a comparison matrix. In this context, 

an annotator is presented with two images, and he/she needs to 

choose which one has a better quality regarding noise (see Figure 6 

for an example). The main problem with this approach is its 

quadratic growth, which means that the cost and difficulty 

increases in a quadratic manner with the size of the dataset. 

Following standard recommendations ITUT [1] and ITU-R [2], a 

minimum of 15 full comparisons O(n2) (i.e., 15 annotators to 

compare all n(n−1)/2 pairs) is required to generate reliable results, 

which can be costly and time consuming. Usually, it is not possible 

to achieve a full design (a full passage on all data points for each 

observer), which implies the need for a sampling strategy or active 

sampling as it’s referred to in the literature. We adapt an active 

sampling technique based on information gain [3], in order to 

extract the most interesting pairs on each iteration and make the 

comparison task the most efficient possible. The score inference is 

finally done using TrueSkill algorithm, from which we generate 

scores on a JOD (Just Objectionable Difference) scale, based on 

Thurstone case V observer model [4]. A JOD is a quality unit 

obtained statistically from annotations. Image A is one JOD apart 

from Image B if 75% of the annotators agree that the quality of 

image A is greater than image B [7].  

 

Technical details of the annotated database. In Table 1, we 

show the final content of the four constructed databases: high 

quality and low quality for two different mannequins (Eugene and 

Sienna, see Figure 5 and 6 for more details). The train/test split 

was defined in such a way that there are no overlapping devices, 

the reason being that we would like to understand the capacity of 

the model to extend to unseen cameras once the model is put in 

production. Moreover, the devices in train and test were chosen to 

maximize the rendition diversity. As an example, in Figure 7, we 

observe the empirical distribution of the database’s image quality 

scale for Eugene HQ and Eugene LQ. The scale definition is 

invariant to a constant offset. Without loss of generality, we have 
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set for each scale, one sample to 0 (a sample is an image of one 

device at a fixed lighting condition). 

 

 

 

 
Figure 6. Example of Average/High-Quality samples, source 

images (upper image) and extracted ROIs (lower images). 
 

Composition of the data set 

 
#Images 
Train/Test 

#Different Devices 
Train/Test 

HQ Eugene 253/48 60/23 

HQ Sienna 190/48 59/23 

LQ Eugene 232/58 51/10 

LQ Sienna 178/39 18/10 

Table 1. Content of the constructed database, see text for more 

details.  

 

ML models and validation. The previous annotated datasets 

allow us to train two CNN-based regressors that estimate the noise 

characterization of the image, one per quality level. Experimental 

results show that we attain better performance with a multitask 

setting that predicts not only the JOD quality level of the input 

image, but also classifies its content (Sienna vs Eugene). Our 

hypothesis is that, with a common model, during training, the deep 

learning model has access to more examples: those of Eugene and 

Sienna, instead of only one mannequin. 

 

 

 

Figure 7. Histograms of the training set for the Eugene databases, 

see text for more details. 

Results 
 

The two proposed models were applied to the testing set. In Table 

2, we present the Spearsman rank correlation coefficient (SROCC) 

for the 4 testing sets. The SROCC indicates if the ground truth and 

the model output rank similarly the input images (the closer to 1 

the better).  

Table 2. Spearsman’s rank correlation coefficient for the two 

models (HQ and LQ) evaluated on the corresponding testing set. 

 

As we can see this is actually the case. This can also be observed 

in Figure 8. The results are better for the Eugene mannequin, 

probably due to the bigger size of the training set. 

 

SROCC Results on testing set  

Model 
Eugene HQ 

Model 
Sienna HQ 

Model 
Eugene LQ 

Model  
Sienna LQ 

0.95 0.88 0.88 0.71 
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Figure 8. Annotated ground truth JOD scores vs predicted JOD 

scores for the LQ model on the Eugene and Sienna testing set. The 

blue line indicates the perfect prediction, and the two yellow lines 

indicate a 0.5 JOD deviation. The point colors indicate the error, 

ie the distance to the ground truth. As we observe, most of the 

samples are within the (-0.5,+0.5) interval. 

 

We also tested the ML setup with four different models (one per 

mannequin and quality level) and without multitasking (i.e. a 

single regression output that corresponds to the estimated quality 

of the input image), we can see the results on Table 3. Comparing 

Table 2 and Table 3 we observe that using multi-tasking improves 

mostly the Sienna LQ results. 

 

Table 3. Spearsman’s rank correlation coefficient for the four 

models (one per mannequin and quality level) evaluated on the 

corresponding testing set. 

Interpretation. This suggests that, in the multitask scenario, the 

features generated by the CNN are mutualized for the LQ model 

between Sienna and Eugene, whereas for the HQ model, this is not 

the case. Indeed, locally, the foreheads of both mannequins contain 

different fine details that are only visible in the high-quality 

viewing conditions. In the low-quality viewing conditions, where 

we look at the whole face, and where fine details are less visible, 

the model can leverage the common face features. 
 

Conclusions  

 

In this paper we proposed an experimental setup that allows to 

automatize  the perceptual analysis of noise rendition on realistic 

portraits. We have constructed a database using pairwise 

comparisons and the TrueSkill algorithm to generate a JOD quality 

level for each image. This ground truth was then used to train two 

CNN-based regressor models. The numerical results confirm the 

validity of our approach for cameras never seen during training, 

showing that using Machine Learning to estimate the perceptual 

image quality of mannequin setups is a robust choice to tackle the 

automatic noise evaluation. 
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SROCC Results on testing set  

 Model HQ Model LQ 

Eugene 0.95 0.88 

Sienna 0.92 0.88 
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