
On a novel technique to quantify local contrast in HDR scenes
Pu Zheng, François-Xavier Thomas, Claudio Greco, Frédéric Guichard
DXOMARK, Boulogne-Billancourt, France

Abstract
This work provides a novel glass-to-glass metric of local

contrast, useful in the context of image quality evaluation of HDR
content. This metric, called Local-Contrast Gain (LCG), uses the
opto-optical transfer function (OOTF) of the imaging system and
its first derivative to compute the incremental ratio between con-
trast in the scene and contrast on the display. In order to be per-
ceptually meaningful, we chose Weber’s definition of contrast. In
order know the OOTF in analytical form and to make the mea-
surement robust to the uncertainty of measurements of the ground
truth, we rely on a model that we propose and that expands upon
our previously published work. We provide experimental valida-
tion of our metric on a variety of target charts, both reflective and
transmissive, both in isolation and within complex setups span-
ning more than six EVs.

Introduction
High Dynamic Range (HDR) imaging is a technology that

enhances the contrast and color range of images, making them
appear more vivid and realistic. Several formats exist for both
photos (HEIF, AVIF with or without gain maps, etc.) and videos
(HDR10, HDR10 +, Dolby Vision, etc.) that can encode a lumi-
nance greater than 1000 nit with contrasts higher than 1000 : 1.
When viewed on a compatible display, these pictures can repro-
duce real-life scenes more realistically for human observers. Al-
though HDR provides exciting new possibilities, it also presents
novel challenges in terms of evaluation of the performance of an
imaging system.

Traditional approaches to evaluating the performance of an
imaging system in terms of exposure usually rely on very syn-
thetic statistics, such as the average lightness level in the scene
(target exposure) or the global contrast, i.e, the contrast between
the brighter and darker lightness levels represented in the image.
These metrics are usually evaluated in a linear space, but occur-
rences where the evaluation is carried out in a gamma-encoded
space (such as Y’CbCr) are not rare.

These approaches are perfectly suitable for the evaluation of
the legacy Standard Dynamic Range (SDR) formats, where the
range of luminance that can be captured by the system is limited
and the encoding opto-electronic transfer functions (OETF) are
generally quite similar to each other and to the inverse of the de-
coding electro-optic transfer function (EOTF) specified by their
format. Unfortunately, the same does not apply to HDR imaging
systems.

Given that HDR imaging is de facto becoming the norm for
consumer electronic imaging, it becomes imperative to define new
suitable figures of merit to be able to quantify the user experience.

Our goal is to define a figure of merit for the preservation of
contrast in a zone of limited dynamic range contained in a spatial
region of a larger HDR image. In order to propose a viable metric,

we had to provide a solution to several challenges, listed below.
First and foremost, the metric has to describe perceptually

relatable phenomena. In particular, it has to be able to distinguish
cases of visible enhancement, preservation, compression, lack, or
inversion of contrasts in a fashion similar to that of an expert hu-
man observer.

Furthermore, the results must be independent of the encod-
ing format of the image. No unfair advantage should result from
a different representation of the same luminance on-screen.

Practical considerations of the measurement process also de-
serve attention. The results have to be robust with respect to the
uncertainty with which the ground truth can realistically be ac-
quired.

Methodology
The proposed LCG metric is, in essence, a metric of preser-

vation of perceptual contrast between a scene and its representa-
tion on screen.

Let Lscene be the ground truth, i.e. the luminance values mea-
surable in the scene (which, in a laboratory environment, we con-
trol to a high degree), and let Ldisplay be the corresponding values
on screen, which depend on how the imaging system responds to
the lab setup. Strictly speaking, Ldisplay should be measured on
the display itself with a light-meter; however this is both imprac-
tical and not necessarily useful, since it introduces a dependence
on the particular display used. For these reasons, every time we
refer to display luminance, henceforth we will implicitly refer to
the luminance that the standard decoding of the image prescribes
for an ideal display.

The relation between scene luminance and display lumi-
nance is given by the Opto-Optical Transfer Function (OOTF)
of the system f : Lscene 7→ Ldisplay. This is usually the compo-
sition of two functions: an unknown encoding Opto-Electronic
Transfer Function (OETF) that maps scene luminance into image
luma and an Electro-Optical Transfer Function (EOTF) that maps
image luma into display luminance. The EOTF is, in general, in-
ferable from the image format and its metadata. The OETF was
originally simply the inverse of the EOTF up to a factor (and thus
the OOTF was linear), but camera manufacturers have since learnt
to use its shape as a tuning parameter for contrast enhancement.

The first step is therefore to acquire a priori knowledge on
a set of contrast values in the scene that will serve to build our
ground truth. In practice this is done by evaluating the luminance
coming from a set of regions-of-interest (ROI). For the purposes
of this metric, ROIs should both be reasonably close in the fram-
ing and have low patch-to-patch contrast. Some examples of tar-
get charts that provide such ROIs are given in Fig. 2.

Since measuring the luminance from these ROI one by one
could be unfeasible (e.g., because of their high number or their
small size), in practice for reflective chart one can rely on the



Figure 1. Opto-Optical Transfer Function as a composition of encod-

ing Opto-Electronic Transfer Function and decoding Electro-Optical Transfer

Function

Figure 2. Examples of target charts suitable for local contrast evaluation.

overall illuminance on the chart and the reflectance of each ROI,
or for transmissive charts on the overall luminance of the back-
lighting panel and the transmittance of each ROI.

On the picture, we compute the average lightness level for
each ROI. These values are linearized in display-referred space,
i.e., using the metadata (and the current standards) to estimate
the actual luminance in nit that a reference display would emit
for that ROI. Linearization into the display space ensures that the
results are independent of the image encoding, which was one of
our goals.

To find a representation of the local OOTF, we fit a gen-
eral model to the luminance pairs (scene luminance, display lumi-
nance) designed to accurately capture the saturation of the high-
lights, as well as clipping and contrast inversion of the dark areas.

Let Ldisplay = f (Lscene) be the estimated OOTF. In differen-
tial form, the Weber contrast between two infinitesimally close
luminance values in the scene is described by:

Wscene =
dLscene

Lscene

The corresponding Weber contrast on-screen will be:

Wdisplay =
dLdisplay

Ldisplay

If we let L = Lscene, then the contrast gain, i.e., the ratio be-
tween the on-screen contrast and the scene contrast it represents

is given by

LCG(L) =
d f (L)
f (L)
dL
L

=

f ′(L)
f (L)

1
L

=
dlog f
dlogL

, (1)

which defines our metric.
Notice that LCG(L) indeed satisfies our last goal:

• when LCG > 1, the contrast is perceptually boosted;
• when LCG = 1, the contrast is perceptually preserved;
• when 0< LCG < 1, the contrast is perceptually compressed;
• when LCG = 0, the contrast is lost (saturation);
• when LCG < 0, the contrast is inverted.

Figure 3. Regions of LCG values in which the contrast is boosted (green),

compressed (yellow), or inverted (red).

As the ratio of two luminance contrasts in logarithmic scale,
we can measure the LCG equivalently in dB/dB or EV/EV; in this
article we shall use the latter. The LCG is in practice the point
elasticity of the OOTF; in this sense, it can be understood as the
continuous version of the Tonal Contrast Gain metric defined in
the Dynamic Range measurement of the IEEE-SA P2020 Auto-
motive Standard [1].

Estimation of the Opto-Optical Transfer Function
As mentioned above, the OETF is in general not known and

needs to be estimated as part of the measurement process.
It is worth asking whether to opt for a fitting of the OOTF

or just an interpolation. There are two main reasons to prefer a
fitting:

1. Fitting provides robustness to the uncertainty in the mea-
surement of the ground truth

2. Fitting gives the OOTF and its derivative in analytical form,
which is much more convenient

The uncertainty is due to how the ground truth can be acquired.
For transmissive charts, the acquisition requires either measuring
patches individually –which is unpractical, time-consuming, and
error prone– or relying on the transmittance of the patches, but
this is affected by the vignetting of the light panel. For reflective



charts: direct measurement of luminance is impossible; thus, one
must rely on reflectance and luminance and is impacted by the
uniformity of the lighting.

Figure 4. OOTF reconstructed via fitting (blue) or interpolation (cyan). The

unavoidable measurement noise affecting the acquisition of the ground truth

makes the fitting approach preferable.

The model used here is an extension of that used in our pre-
vious work [2], i.e. the well-known parametric Naka-Rushton
contrast function [3]:

fK,n(L) =
(Kn +1)Ln

Kn +Ln , (2)

where n and K are respectively the slope and highlight roll-off
inflection point.

This function provides a way to describe common contrast
curves with only two parameters. It typically presents S-curves
for K ∈ [0,1] and n > 1, and good approximations of γ = n power
functions for sufficiently large K > 1, as shown in Fig. 5).

This function can describe quite accurately the majority of
global OOTF on a normalized scale. To be able to describe local
OOTFs in photometric scale, we extend the model thus:

ft(L)= fG,S,K,n,L0,Lsat(L)=

{
L0 +G · fK,n

( L
S
)

∀L≤Lsat

fG,S,K,n,L0,Lsat(Lsat) ∀L>Lsat
(3)

Where G and S are factors to normalize in the interval (0,1) both
display and scene luminance respectively, L0 is a luminance off-

Figure 5. Naka-Rushton curve with n=2.2 and increasing values of K,

compared to a γ=2.2 power function.

Figure 6. Example of tone inversion: the patch that is darker in the real

scene appears brighter in the picture (likely because of the interaction of

lens glare and local tone-mapping algorithms).

set, be it due to the encoding function or camera glare, and Lsat is
the sensor saturation luminance value.

This model is quite effective at describing global monotonic
OOTFs. However, we observed experimentally that it does not
always fit well local OOTFs, especially in the dark parts of the
image. Specifically, we know analytically that this model can-
not handle tone inversions, because its derivative is always non-
negative, while cases of tone inversion do happen in real-world
situations (see an example in Fig. 6).

We therefore augmented our model with a term gp such that
its derivative can be negative. We obtained the best results with a
quadratic polynomial gp = p2L2 + p1L+ p0.

In order to preserve the differentiability of the function, we
want this term to blend continuously with Eq. 3. The blending
term must be able to vanish the polynomial terms, which naturally
suggests an exponential α(L) = e−

L
λ .

Both new terms are of class C∞ , so differentiability is not an
issue. In total, this introduces four new parameters to the model:
p0, p1, p2, and λ . However, we can reduce this number to three
by imposing one of the roots at the maximum scene luminance:
gp(L) = pA

(
L−pr

S

)( L
S −1

)
.

This gives a complete model defined as:

ft,p,λ (L) = e−
L
λ ·gp(L)+

(
1− e−

L
λ

)
ft(L) (4)

There are nine parameters in total. Two of them can be de-
termined analytically without optimization, all the others can be
optimized together in a single joint model. Note that the scale fac-
tors G and S can be estimated analytically and do not need to be
optimized. Furthermore, we are only interested in evaluating this
over the range of luminance covered by the target chart, so no in-
ference is made about the behavior in other parts of the dynamic.

Viewing Glare
Notice that Eq. 1, when implemented in a programming lan-

guage, is developed as L
f (L) · f ′(L), which presents an obvious risk

of division by zero if f (L) = 0, i.e., if there is clipping in the dark
parts of the image. The natural solution for a programmer would
be to add a small positive constant to stabilize the fraction:

LCG(L) =
L

f (L)+ν
f ′(L)

It is worth asking whether the value ν , which being homoge-
neous with f (L) is measured in nit, also has a physical interpreta-



tion. If f (L) is the light emitted by the display, then ν would be an
additional constant light that the user perceives. This is consistent
with the notion of viewing glare, the reflection of the environment
light on the screen, illustrated in Fig. 7.

Figure 7. Except in pitch darkness, an observer will always perceive a

fraction of the ambient light as coming from the display, due to the reflectance

of the screen.

Interpretation of the LCG values
In order to provide an intuition of how to interpret the results

of a device, let us analytically find what the LCG would look like
for a few special cases.

The first case we can consider is that of a perfectly linear
OOTF: f (L) = A ·L. While a linear OOTF is not necessarily ideal
in the sense of user preference, it is a useful reference, as it rep-
resents contrast fidelity with respect to the ground truth. Ignoring
the viewing glare term ν for the sake of simplicity, we can observe
that:

LCG(L) = L · f ′(L)
f (L)

= L · D[A ·L]
A ·L

= L · A
A ·L

= 1

That is, for a linear OOTF, the LCG is constant and equal to one.
Conversely, we can say that in the neighborhood of any point such
that LCG(L) = 1, the OOTF behaves linearly. This is consistent
with our previous observation that when LCG(L) = 1 the contrast
is preserved.

Another case worth considering is that of a gamma function:
f (L) = Lγ . While f (L) is an OOTF not an OETF, a gamma func-
tions are still somewhat typical. We can determine that:

LCG(L) = L · D[Lγ ]

Lγ

= L · γ Lγ−1

Lγ

= γ

That is, for a gamma OOTF, the LCG is constant and equal to
gamma. Conversely, we can say that in the neighborhood of any
point the OOTF behaves like a gamma function with the value
of gamma given by the value of the LCG, which generalizes our
previous result.

Scalar performance indicators
When the goal is to compare two devices, it is useful to de-

fine scalar metrics that correlate with some definition of perfor-
mance defined with regard to the target application.

An intuitive solution would be to simply average the value
of the LCG over its domain. However, we have observed experi-
mentally that for this metric to correlate with a user’s experience,
the boosting of contrasts in one region should not compensate for
compressions and inversions elsewhere. We thus define the Aver-
age Contrast Compression as:

C =
1

Lmax −Lmin

∫ Lmax

Lmin

[LCG(L)]+1
−1 dL

As mentioned in the previous section, the value of the LCG in a
point can be interpreted as the exponent of a local gamma func-
tion. This means that an Average Contrast Compression of C im-
plies that the imaging system loses on average over its domain
(i.e., locally to where it was measured) as much perceptual con-
trast as an OOTF f (L) = A ·LC.

A different approach would be to consider the range of lu-
minance values in which the captured image is exploitable. To do
so, let θ be the smallest acceptable value of LCG, chosen with re-
gard to the target application, and let I be the largest interval such
that LCG(L) ≥ θ∀L ∈ I. We define the Local Contrast Dynamic
Range as:

R = log2
supI
infI

Notice that because the LCG is computed locally, this metric only
makes sense when compared to the dynamic in the ground truth
of the chart over which the OOTF was estimated.

Figure 8. The Local Contrast Dynamic Range is the range in bit of the

largest interval over which the LCG is always above threshold. A reasonable

example of threshold is θ=5%.

Experimental results
We provided extensive experimental validation of our met-

ric. While the metric can be meaningfully applied to a setup con-
taining a single element, it is particularly pertinent in setups with
multiple charts in different parts of the dynamic (see examples in
Fig. 2.

In all situations, the results of the metrics match with the ob-
servation of expert analysts in terms of preservation, compression,
lack, or inversion of contrast.

In Fig. 9, we present the results for a Portrait HDR setup.
This setup is comprised of a Realistic Mannequin (on the left)



Figure 9. Left: Portrait HDR setup. Right: Results measured on the Composite chart.

and a back-lit Composite chart (on the right). The illuminance
on the forehead of the realistic mannequin is 1000 lx, while the
luminance of the light panel is 5500 cd/m2. The measurement
is performed on the gray scale of the Composite chart. We can
see that the fitting of the OOTF has effectively captured the in-
version of tones in the darkest patches (this is particularly visible
when observing the OEFT). However, this only affects the first
two patches, so it does not have a major effect on the overall LCG.
In practice, the LCG peaks at a value around 50 % for very dark
values, then decreases slightly but consistently, before saturating
in the last patch. Overall, this gives an average contrast compres-
sion of 28.8 %.

In Fig. 10, we present the results for an HDR Composite
setup. This setup is comprised of two back-lit Composite charts.
The luminance of the left panel is 100 cd/m2, while the luminance
on the right panes is 6500 cd/m2, which gives an approximate dy-
namic of 6 EV between them. Here, we can see that the two local
OOTF are very different. On the darkest light panel, the first few
patches are clipped, but then the contrast is considerably boosted,
up to 150 %. Conversely, on the brightest light panel the OOTF
is roughtly linear (LCG= 1) for the first few patches, but then the
LCG linearly decreases until the OOTF reaches saturation.

In Fig. 11, we present the results for an Autofocus HDR
setup. This setup is comprised, among other things, of a
DeadLeaves chart and two back-lit Composite charts. The illu-
minance on the DeadLeaves chart is 1000 lx, while the luminance
of both light panels is 1850 cd/m2, which gives an dynamic of ap-
proximately 2 EV between the reflective and transmissive charts.
Here, we can see that the two panels give very similar results to
each other, while their behavior is noticeably different than that
on the DeadLeaves chart. In particular, the DeadLeaves shows a
contrast boost over most of its luminance range, while the tones
over the light panels are generally compressed. Some clipping of
the brightest parts of the DeadLeaves is visible.

Conclusion
In this article, we present a novel technique for quantifying

the performance of an imaging system in terms of rendering of
the local contrast.

The main novelty of our approach is its local nature. Sev-
eral measurements have been proposed that provide some figure

of merit associated to a device’s preservation of contrast, however
they generally assume that the imaging system is well-behaved, in
the sense that it presents a single and well-defined transfer func-
tion. This makes them ill-suited to handle advanced ISP pipeline
such as those of mobile cameras, where local tone mapping is the
norm rather than the exception.

Also, most contrast measurements are based on gray scales,
such as the Dynamic Range and Contrast Performance Indicator
measurements in the P2020 standard [1] rely on the exact value
of luminance emitted by each uniform patch. This requires a
precise measurement to be provided each time, which is a time-
consuming and error-prone endeavor. By estimating the OOTF
with a fitting model, our technique can be robust to uncertainty in
the ground truth and does not require recalibration each time.

Furthermore, the model we propose here for the OOTF is
based on the well-known Naka-Rushton mode [3], which we aug-
mented with terms to accurately describe the saturation of the
highlights and clipping and inversions of the dark parts of the im-
age.
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Figure 10. Left: HDR Composite setup. Center: Results measured on the left Composite chart. Right: Results measured on the right Composite chart.

Figure 11. Top Left: Autofocus HDR setup. Top Right: Results measured on the top Composite chart. Bottom Left: Results measured on the DeadLeaves

chart. Bottom Right: Results measured on the right Composite chart.


	Abstract
	Introduction
	Methodology
	Estimation of the Opto-Optical Transfer Function
	Viewing Glare
	Interpretation of the LCG values
	Scalar performance indicators
	Experimental results
	Conclusion

