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Abstract 
Portraits are one of the most common use cases in 

photography, especially in smartphone photography. However, 

evaluating portrait quality in real portraits is costly and difficult 

to reproduce. We propose a new method to evaluate a large range 

of detail preservation rendering on real portrait images. 

Our approach is based on 1) annotating a set of portrait 

images grouped by semantic content using pairwise comparison 

2) taking advantage of the fact that we are focusing on portraits, 

using cross-content annotations to align the quality scales 3) 

training a machine learning model on the global quality scale.  

On top of providing a fine-grained wide range detail 

preservation quality output, numerical experiments show that the 

proposed method correlates highly with the perceptual evaluation 

of image quality experts.  
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Introduction 
Camera quality is a major reason for consumers to choose 

between smartphones. However, evaluating a camera’s quality is 

costly, cumbersome, and, in many cases, a non-repeatable 

process. To simplify and improve this process, many techniques 

have been developed for automatic image quality assessment. 

In the state of the art, image detail quality assessment is 

predominantly based on objective metrics applied to synthetic 

patterns, such as the widely used Dead Leaves chart, which 

simulates real-world characteristics [3]. While these methods are 

well-established, they struggle to keep pace with the growing 

complexity of modern imaging systems. As camera technologies 

evolve, integrating sophisticated algorithms that dynamically 

adapt to scene content, the relevance of traditional evaluation 

techniques comes into question. These new computational 

pipelines demand more nuanced approaches to accurately 

measure the enhancements offered [5]. 

Evaluating portrait rendering using face-centered content in the 

laboratory, such as the usage of mannequins [4,7], marks a clear 

advancement over conventional flat chart-based techniques. The 

application of machine learning enables a deeper investigation 

into camera optimizations designed specifically for facial 

imagery [4]. By integrating face-specific content with machine 

learning algorithms, assessments can more accurately reflect the 

capabilities of modern camera systems, considering factors like 

noise management and image sharpening [4,7].  

However, laboratory setups cannot reproduce the complexities of 

real-life scenes. This study continues extending the previous 

works [2,6] that bridge the gap from laboratory metrics [4,7] to 

real scenes for portrait assessment using machine learning 

models. 

 

Contributions: To ensure high-quality ground truth labels, we 

introduce a structured shooting protocol and evaluation protocol. 

The shooting protocol defines a series of scenes characterized by 

their content, framing, illumination conditions, and camera 

parametrization. The evaluation protocol specifies the 

visualization conditions, the annotation task – in this case, a 

pairwise comparison - and the analysis conducted by image 

quality experts based on the question posed.  

This protocol ensures repeatability and precision in the image 

annotation, as experts compare the same content and answer to 

the same feature analysis. However, this process creates scene-

dependent quality scales that are not aligned across scenes even 

though face crops are scaled to be viewed at the same size. Such 

misaligned ground truth poses significant challenges for training 

machine learning models. 

To address this, we propose to construct a global portrait scale for 

detail rendition by integrating per-scene scales through cross-

content analysis. This method preserves the granularity of per-

scene pairwise comparisons while enabling the creation of a 

common perceptual quality scale suitable for training machine 

learning models. Moreover, this global scale not only facilitates 

more effective model training but also ensures fair comparisons 

between scenes in both perceptual and scoring terms, a critical 

requirement for industrial applications where consistency across 

diverse content is essential. 

Novelty 
The study expands upon previous work on detail preservation 

assessment in real-scene portraits [6,2]. In this paper, we propose 

a new approach to deal with the variety of scenes that compose 

the PIQ data set[6]. The proposed method allows us to maintain 

the precision and granularity of the original scenes, while also 

having a global perspective in the quality scale. This is 

particularly valuable for industrial applications where fair, 

consistent, and accurate cross-scene comparisons are essential. 

The numerical results show a strong correlation with human 

perception on unseen scenes, which indicates that the current 

approach allows generalization outside the training scenes. This 

ability to extend across diverse portrait scenes reinforces the 

robustness of the model for real-world deployment. 

Proposed method 
The publicly available dataset proposed in [6] provides for every 

image a quality score measured in Just Objectionable Difference 

(JOD) units [1]. These scores are obtained from pairwise 

comparisons conducted by more than 30 experts. In this study, we 



will focus on the detail preservation feature (texture-noise 

compromise) and 25 selected scenes. 

 

Database extension: To extend the quality range, we selected the 

25 most diverse and relevant scenes from PIQ, ensuring a broad 

representation of conditions for industrial case interests. The goal 

of this extension is to enhance the granularity of the entire dataset 

and extend the quality range at the high end of the scale. 

To this end, we: 

1) Increased the diversity of devices by adding several 

smartphones to the dataset. 

2) Introduced high-quality references from a DSLR (Sony 

A7R4). 

3) Generated synthetic images to bridge the gaps in the 

quality scale. We use subsampling, slight sharpening, 

and Gaussian noise. This simple approach ensured a 

smooth transition between high-quality DSLR images 

and smartphones, using fixed variance noise for 

controlled degradation of texture-noise compromise. 

 

As a result, the total number of images per scene has 

approximately increased from 100 to 200.  

 

Annotations: Our annotation process follows the same controlled 

viewing conditions outlined in PIQ23 [6], to ensure perception-

based quality annotations under consistent and unbiased 

conditions. 

 

• The new images per scene were integrated into the 

previously annotated dataset in the per-scene 

annotation task. These new annotations allow us to 

update the JOD scene scale for each of the 25 scenes.    

 

• Moreover, we sampled images from each scene along 

the quality scale to create a cross-scene (cross-content) 

image set. This set was annotated under the same 

conditions to maintain consistency. 

 

Alignment of the scene-scales: Every image i annotated on the 

scene-annotation task has a JOD score xi. From the cross-scene 

annotation task, we also obtain a set of JOD scores for every 

image (yi). Therefore, this set of images has two scores (xi and yi) 

that we can use to align the scales. For every scene j, we select 

the images with both annotations and compute the alignment 

between them using least squares:  

 

yi,j = aj xi,j +bj                                                                                                                    (1) 

 

Creation of a unified scale: In order to create the common 

unified scale, we use the previously calculated coefficients aj, bj. 

It is important to notice that the cross-content scale y was created 

from images that did not share the same framing or illumination 

condition, and therefore are more difficult to annotate. This 

means that the final scores y are less precise and granular than 

those obtained from the per-scene annotations x. Therefore, 

aligning directly with the cross-content scale y is not ideal. 

Instead, it is crucial to identify a reference scene xj. This reference 

scene should ideally have a wide JOD range, as it relates to 

various image renditions and diverse skin tones. Once this scene 

is selected, we can obtain the aligned ground truth scores by 

solving the associated linear equation.  In Figure 1 we can observe 

a sample of the produced quality scale. For space reasons, the 

images needed to be reduced. To better observe the difference 

between the images in the high-end region please refer to: 

https://corp.dxomark.com/image-sample-from-the-

psychophysical-scale/. 

 
Figure 1. Sample of images from the aligned scale and their associated JOD 
detail quality score. Note that 1 JOD distance implies that the difference in 
quality between the images is visible. For high-resolution copies of the 
images, please refer to this link 

 

 
Figure 2. Histogram along the JOD quality scale of the aligned scenes. 
The color indicates a scene. 

 

Data set split: A main objection of using scene-dependent scales 

is the fact that given a new scene, the ML model needs to be 

retrained on the new scene so that it can learn the associated scale. 

However, the characteristics that make an image better or worse 

in terms of image quality do not depend on the scene. To evaluate 

the capacity of the ML model to generalize to new scenes, we 

propose a train-valid-test scene split based on scenes. Inspired by 

[2], this means that the scenes in the training set are not on the 

testing set and vice versa.  

https://corp.dxomark.com/image-sample-from-the-psychophysical-scale/


Model training: To assess the impact of scene-dependent scales 

and the benefits of the alignment, we trained multiple ML 

architectures using both the individual scene scales and the 

aligned global scale on the scene-split test set.  

We employed a multitask approach inspired by FULL-HyperIQA 

[10] for the individual scene scales, enabling the model to learn 

the relationship between scale and scene. However, given the 

challenge of classifying the scene solely from a cropped face 

region, we modified the architecture to incorporate the complete 

image as additional input (see Figure 3). This variant is referred 

to as the FULL-HyperIQA variant in Table 1. 

 

The loss function combined Mean Squared Error for quality 

prediction and Cross-Entropy loss for scene classification. We 

applied a weighted sum, assigning a weight of 0.5 to the 

classification and 1.0 to the quality prediction loss. 

 

 
Figure 3. Multitask approach to train on the individual scene scales. 

 

By contrast, training on the aligned global scale simplifies the 

task, as the model only needs to predict a single quality score 

without learning scene dependencies. In this case, we used a 

single-task model optimized purely for quality prediction (see 

Figure 4). 

 

 
Figure 4. Single-task approach to train on the unified scale. 

 

To ensure robust evaluation, we tested different training 

configurations for all the proposed methods and reported the best 

results. We randomly cropped square patches of size 1344 (1 

patch per image) and used Adam stochastic optimization with 

different learning rates between 10−6 and 10−4. The training was 

conducted for 300 epochs with a learning rate decay factor of 0.05 

every 10 epochs. For FULL-HyperIQA, we experimented with 

different numbers of scenes (values of k)  including 3, 5, 10, and 

25. Early stopping was applied with a patience of 40 epochs. 

Results 
The new quality scale extends 14 JOD units, a wide JOD range 

that goes from low-light conditions to outdoor well-illuminated 

scenes (See Figures 1 and 2). 

The alignment between the original per-scene scales and the 

cross-content scale is illustrated in Figure 5, where the scaling 

coefficients (a, b) are plotted for each scene. Ideally, a perfect 

alignment would result in a=1 and b=0. The deviation of these 

coefficients from this perfect fit highlights the differences in 

scene-specific quality scales, underscoring the importance of 

alignment.  

 

 
Figure 5. Representation of the a,b coefficients that align scales (see text 
for more details). Color represents different scenes. 

 

Table 1, compares models trained on individual scene scales 

versus those trained on the global aligned scale, on the same 

testing set. To ensure a fair comparison, we compute metrics for 

each scene separately and report the average performance across 

all scenes. The results demonstrate that the models trained on the 

unified scale generalize well to unseen scenes, showing a strong 

correlation with human perceptual evaluations (see SRCC 

column).  

 

Furthermore, Table 2 provides a detailed breakdown of the 

unified scale, with metrics computed globally (without scene 

notion). Notably, the mean absolute error (MAE) between the 

predicted values and the ground truth is, on average, below 1 JOD 

for MUSIQ and HyperIQA backbones. This means that this error 

is, in general, not perceivable.  

 

Data Model PLCC SROCC 

Individual 
scene 
scales 

Multitask resnet50 
baseline 

0.60 0.62 

FULL-HyperIQA [10] 0.63 0.67 

FULL-HyperIQA 
variant 

0.71 0.72 

Unified 
scale 

Resnet50 baseline 0.78 0.76 

MUSIQ [9] 0.82 0.78 

HyperIQA [8] 0.83 0.80 
Table 1. Comparison of baselines according to their average scene 
correlation (PLCC and SROCC). As shown by the table, the deep learning 
methods tested perform significantly better on the unified scale. 

 
Data Model SROCC MAE 

 
Unified 
scale 

Resnet50 
baseline 

0.81 1.41 

MUSIQ [9] 0.90 0.47 

HyperIQA [8] 0.88 0.58 
Table 2. Performance of deep learning models trained on the aligned 
scale. Results are computed on the scene-split test set (see text for more 
details) 

Overall, the results in Tables 1 and 2 highlight the benefits of 

using the unified scale. This approach not only improves 

generalization to unseen scenes but also simplifies the training 

process. 



Conclusions  
This work extends an existing portrait dataset by incorporating 

both real and synthetic portraits, annotating portrait scenes, 

constructing an extended JOD-based quality scale, and training 

ML architectures for image quality prediction. We introduced a 

methodology for: 

• Constructing a psychophysical quality scale for portrait 

images, 

• Evaluating the detail-noise tradeoff independently of 

scene variations. 

Numerical results demonstrate: 

• The effectiveness of the proposed method in modeling 

perceptual quality. 

• The superiority of scene alignment over multitask 

learning when dealing with different JOD scene scales. 

The proposed methodology represents a significant contribution 

to the field of portrait image quality assessment, offering a robust 

framework for evaluating image quality across diverse 

conditions. 
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