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Abstract 

High dynamic range (HDR) scenes are known to be 

challenging for most cameras. The most common artifacts 

associated with bad HDR scene rendition are clipped bright 

areas and noisy dark regions, rendering the images unnatural 

and unpleasing. This paper introduces a novel methodology for 

automating the perceptual evaluation of detail rendition in these 

extreme regions of the histogram for images that portray natural 

scenes. The key contributions include 1) the construction of a 

robust database in Just Objectionable Distance (JOD) scores, 

incorporating annotator outlier detection 2) the introduction of 

a Multitask Convolutional Neural Network (CNN) model that 

effectively addresses the diverse context and region-of-interest 

challenges inherent in natural scenes. Our experimental 

evaluation demonstrates that our approach strongly aligns with 

human evaluations. The adaptability of our model positions it as 

a valuable tool for ensuring consistent camera performance 

evaluation, contributing to the continuous evolution of 

smartphone technologies. 

Introduction 

The Human Visual System (HVS) can adapt to very 

extreme light conditions that can expand a dynamic range of 120 

dB with adaptation, and up to 40 dB without adaptation [17]. 

However, most cameras find it challenging to reproduce fine 

details under High Dynamic Range (HDR) scenes (with dynamic 

range up to 80 dB). The difficulty lies in their ability to properly 

expose both dark and bright areas simultaneously and render 

(tone map) the information pleasantly into a limited dynamic 

range. This problem often results in clipped bright lights 

(saturated pixels that are fully white) and/or shadow detail loss 

(very dark or noisy pixels as the sensor's response falls below its 

noise threshold), leading to the loss or alteration of visual 

information. 

Given the current complexity of the smartphone ISP 

pipeline and the importance of its tuning, automatic Image 

Quality Assessment (IQA) has gained significant importance. 

IQA serves as a critical tool in evaluating the performance of 

image processing algorithms, ensuring that they effectively 

capture and represent scenes with varying levels of brightness 

and contrast, thereby enhancing overall image quality. 

Our research focuses on the perceptual evaluation of bright 

preservation (BP) and dark recovery (DR) attributes, 

highlighting the crucial role of dynamic range in determining 

image quality.  

Contributions  

This study encompasses several key contributions:  

1) The construction of a robust BP and DR dataset, based on 

pairwise perceptual evaluations. Additionally, we 

introduced a post-experiment control of the annotations to 

identify and fix any outliers that are not aligned with the 

established guidelines. 

2) The development and training of no-reference image 

quality models for dynamic range quality assessment. 

Notably, our approach distinguishes itself by 

acknowledging the different, yet complementary, 

perceptual evaluations of bright preservation and dark 

recovery. To achieve this, our approach considers the 

unique regions of interest across diverse scenarios, 

something that has not been addressed before in the IQA 

field. 

Related work 

A good image quality rendition in natural scenes, 

particularly those with a large illumination range, presents a 

significant challenge for devices during the capture process. Few 

previous studies have explored both Image Quality Assessment 

(IQA), and High Dynamic Range (HDR) image rendering to 

address these challenges. 

IQA can be broadly categorized into Full-Reference (FR) 

and No-Reference (NR). FR-IQA compares a reference and a 

distorted/test image to predict the perceptual quality of the test 

image. In contrast, NR-IQA methods output an absolute quality 

measure without taking into account any reference. They are 

particularly relevant in real-world scenarios where obtaining a 

pristine reference image may be impractical or impossible. 

 

Full-Reference IQA. Most works on FR-IQA for bright and 

dark detail rendition have been proposed in the context of 

quantifying the amount of distortion introduced by tone mapping 

operators, that is, algorithms that allow to visualize HDR images 

in low-dynamic screens. Aydin et al. [3], was the first to 

introduce an image quality metric inspired by the HVS capable 

of comparing images with different dynamic ranges. Their 

metric identifies and detects 3 different common distortions 

introduced by a tone compression operator (“loss of visible 

contrast”, “amplification of visible contrast”, “reversal of visible 

contrast”). Also, for tone mapping quality assessment, Yeganeh 

and Wang [18] proposed the Tone Mapped image quality index, 

which is an extension of the Structural Similarity Index to the 

case where the reference and the evaluated image do not have the 

same dynamic range.  Kundu et al [19] extended this method by 

considering saliency models. Song Y, et al, [6] introduced 

context-region assessment by proposing a quality metric that also 

considers the color distortion. However, objective measures are 

known to correlate poorly with human perception [20].  

 

No-Reference IQA. Since the original image is usually 

unavailable for use as a reference in many applications, it is 

necessary to move into the NR-IQA. Most NR-IQA methods for 

evaluating images from HDR scenes target HDR format images 

[7,10,11,12], that is, images that need to be displayed on HDR 

screens. But this scope, in terms of image type coverage, is 

relatively small given the current cost and presence of HDR 
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displays in the consumer market. Here, we are interested in 

analyzing low dynamic range images, independently of the 

process used to generate them. There is a notable gap in the 

availability of a robust perceptual database founded on pairwise 

comparisons, tailored for both Bright Preservation and Dark 

Recovery aspects since existing research predominantly 

concentrates on assessing overall image quality in both SDR and 

HDR images, neglecting a specific emphasis on preserving 

intricate details within the bright and dark regions. 

Proposed method 

We propose a different approach to NR-IQA for low 

dynamic range images. Our goal is to estimate the quality of a 

photograph from a predefined scene known to be HDR. This is a 

task that humans can do very easily (less than 5 seconds). To this 

end, we gathered a quality-diverse and precisely annotated 

dataset of images, to serve as ground truth for training a multitask 

machine learning algorithm. The numerical results show the 

relevance of this approach.  

Dataset  
The database is composed of 25 scenes for Bright 

Preservation and 25 scenes for Dark Recovery. A scene here 

denotes a set of images with similar content captured in the same 

location with similar viewing angles. We consider portrait and 

non-portrait scenes, as can be seen in Figure 1. For each scene, 

we have at least 100 images resulting in a database of about 2500 

images for Bright Preservation and 2500 images for Dark 

Recovery. The images are sourced from over 148 devices, 

guaranteeing a thorough representation of the market’s quality 

range. 

Annotation strategy 
For all 50 scenes in our database, images within a scene 

have been perceptually annotated using a pairwise comparison 

(PWC) methodology. Each scene was annotated independently. 

The annotation task was done under controlled conditions, 

with no direct illumination on the screen. The displays were 

calibrated (D65 white point with peak luminance at 120cd/m2). 

The viewing condition was also fixed: the images were displayed 

side by side at a distance to the eye of 65cm, on a 32’’ 16:9, UHD 

4K screen. Annotators were able to zoom in to see both images 

simultaneously at 1:1. 

The opinion of more than 20 experts was gathered using an 

internal PWC tool. Observers were asked to select the best out of 

two images, following predefined guidelines. This process 

involved conducting up to 1.0 standard trials per scene. Each 

standard trial involved evaluating n(n−1)/2 pairs for an n-image 

set. 

To optimize the cost of the pairwise comparison task, 

Active Sampling (ASAP), as referenced in [4], was employed. 

This strategy prioritizes the selection of image pairs that offer the 

most valuable information. By acknowledging that not all 

comparisons are equally useful, the Active Sampling method 

enhances the efficiency of the evaluation process. 

Psychometric scaling. Designing a PWC experiment requires 

modeling the statistical distribution of the image quality.  Based 

on the Thurstone Case V observer model, outlined by Perez-

Ortiz et al.[1], the quality of an image is described as a Gaussian 

distribution 𝑵(𝝁, 𝝈). The average µ represents the actual quality 

and 𝝈𝟐 is its “perceptual” variance across observers.  

The results are typically expressed in Just-Objectionable-

Difference (JOD) units. Two images are 1 JOD apart if 75% of 

observers choose one as better than the other, and a random guess 

(i.e., probability of 50%) results in a JOD distance of 0 between 

the images. 

Annotator outlier analysis. In our outlier analysis study, we 

employed the CrowdBT model [2]. This model assumes equal 

treatment of each annotator and introduces the CrowdBT 

coefficient defined as: 

𝜼𝒌 = 𝑃𝑟( 𝑿𝒊 ≻𝒌  𝑿𝒋 | 𝑿𝒊 ≻ 𝑿𝒋)          (𝟏) 

where 𝜂𝑘 represents the probability that annotator k chooses the 

image i over the image j, assuming a perfect annotator would 

make the same choice. 

We calculated the CrowdBT coefficients 𝜂𝑘 using the 

Maximum Likelihood Estimator. For an ideal annotator (𝜂𝑘 ≈
 1), spammer (𝜂𝑘 ≈  0.5), and malicious or poorly informed 

annotator (𝜂𝑘 ≈  0), distinct values were obtained. 

Figure 2 illustrates the pattern of annotators (designated by 

capital letters) across different scenes. It highlights significant 

variations in behavior both among annotators and across scenes. 

Notably, annotators like 'F' who consistently rate 0 (malicious) 

with a mean score below 0.5 (indicative of spamming) can 

disrupt the integrity of the JOD scale. Therefore, it is crucial to 

identify and address such outliers to ensure the reliability of the 

final scale. 

When 𝜂𝑘 ≈  0 the annotator inverted most of the 

comparisons. In such a case, we decided to invert the annotator 

comparison matrix instead of discarding it. This approach helps 

maintain the number of total comparisons, very important to 

avoid poor convergence of the quality scale.  

This methodology proved valuable in identifying annotator 

patterns and refining our annotations. The final ground truth is a 

set of images, structured by scenes, where every image has a 

robust JOD score assigned. Note that, by construction, each 

scene has an independent quality scale.  

Figure 2 - CrowdBT annotators' factors across the scenes. Mean, 

min and max correspond to the annotator’s computed crowdBT factors 
across all scenes. 

Figure 1 - Scene examples for BP and DR datasets. Portrait and non-
portrait. 
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Machine learning model for quality prediction 
We implement a multitask learning approach where the 

prediction of the quality score is supported by the classification 

of the scene type (25 scenes for Bright Preservation and 25 

scenes for Dark Recovery) as an auxiliary task. The combination 

of the two tasks allows us to train on all images, independently 

of their scale, making the model capable of generalizing across 

different scenarios and shooting conditions. 

As can be seen in Figure 3, the only input of the model is 

the complete resized image. We use the backbone of a pretrained 

ResNet-50 [14] to extract relevant features from the image. 

These extracted features from the input image are then channeled 

into two distinct customized fully connected heads: one for 

quality prediction and the other for scene class prediction, as 

described in [15]. This results in the prediction of a float value 

for the quality and an integer value mapping to the scene type. 

Implementation details can be found in Appendix A 

JOD score to AI global score mapping 
During the annotation process, each scene was annotated 

separately to ensure the high quality of the final annotations, 

given that cross-content image comparison is prone to 

inaccuracies. Therefore, by construction, the JOD quality scores 

are only meaningful within each content group (i.e., scene).  

Each scene has a different JOD range that is linked to its 

intrinsic difficulty:  

• For an easy scene, the difference between a good and a bad 

device is less visible for the annotators, and therefore the 

JOD range is smaller. 

• For a challenging scene, the difference between a good and 

a bad device is important, with many possible intermediate 

cases.  Therefore, we expect a larger JOD range. 

This means that comparing the JOD scores across different 

scenes is not a straightforward task. If we want to, for example, 

compare two devices shot across multiple scenes, we need a way 

to aggregate and compare scores from different scenes. To 

address this issue, it is crucial to map the JOD scale into a 

comparable score. This is achieved by adding a final block at the 

end of the model prediction pipeline. This block applies a 

function taking as inputs the quality score in JOD and the scene 

class prediction, producing an output score ranging from 0% to 

100%. A diagram of the complete framework can be seen in 

Figure 3.  

The choice of the mapping function needs to meet some 

constraints:  

• Monotonically non-decreasing function: The score 

should consistently increase with higher JOD values. 

• Bounded: The score should align with the human 

perception evaluation. 

Given those constraints, a Sigmoid function is chosen.  The 

parameters of the Sigmoid were empirically fine-tuned for each 

scene according to its difficulty. 

It is important to note that this final block has fixed weights 

chosen empirically, which are not changed during the training of 

the model itself. 

Experiments 

Dataset Split 
Before starting the training process, the annotations were 

split into 3 different datasets: Train (60%), Validation (20%) and 

Test (20%). Splitting the dataset is a very important task as 

unbalanced sets might lead to biased predictions and poor results. 

The description of the optimization problem and the considered 

constraints can be found in Appendix B. 

Model performance 
Performance was evaluated with 3 metrics: 

• Mean Average Error (MAE). The smaller the better. 

• Spearman’s Rank correlation coefficient (SROCC): 

The bigger the better 

• Pearson’s linear correlation coefficient (PLCC): The 

bigger the better. 

Metrics were computed on each scene separately and the 

mean over all the scenes is reported in Table 1. The model shows 

a strong correlation with human perceptual evaluations and an 

MAE inside the interval in which a person, on average, cannot 

distinguish a change in quality, that is, 1 JOD. 

Repeatability tests 
A common problem seen on current cameras is their 

stability. Photos captured one after the other by the same camera 

may present different renderings, due to the trigger of different 

camera treatments. An important task the proposed models 

should be able to handle is to identify those instabilities, whether 

they are small or big. 

MODEL MAE 

(JOD) 

SROCC PLCC 

BRIGHT 

PRESERVATION 

0.55 0.88 0.90 

DARK RECOVERY 0.59 0.86 0.86 
  
Table 1 - Performance of Bright Preservation (BP) and Dark 
Recovery (DR) models. 

 

Figure 4 - Example of repeatability tests performed with the Bright 

Preservation model. Images in the same row were taken with the same 

camera in different shooting sessions. See text for more details. 

 

Figure 3 - Diagram of final model: A multitask CNN that predicts the 

scene class and the JOD image quality. A final block maps the JOD and 
the scene prediction into a cross-scene comparable score, see text for 
more details. 
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To check the capacity of the proposed models to identify 

repeatability problems, images coming from the same shooting 

session were passed through the models and their results were 

perceptually checked. It is important to notice that those images 

were not included in the original dataset, and represent images 

never seen before by the models. In Figure 4 and Figure 5, we 

can see 3 sets of images ordered by rows. On the left, we see the 

worst image of the same shooting sequence, and on the right the 

best. First, we see that the differences are clearly visible in the 

bright areas (Figure 4) and the dark regions (Figure 5). As 

expected, we can see that both the Bright Preservation and the 

Dark Recovery model are able to identify and quantify 

repeatability problems. This is true for both small differences 

(0.52 and 1.16 on Figure 4, or 0.55 and 0.99 JOD on Figure 5) 

and big differences (JOD bigger than 3 on the last row of both 

figures). 

Comparison of different device shooting 
sessions 

Weather conditions, the hour of the day, or even the season 

can have a great impact on a (smartphone) camera performance 

and therefore, the perceptual analysis of its images might give 

different results depending on the different shooting sessions. 

Moreover, it is well known that camera processing systems may 

present instabilities that make devices behave differently. 

Therefore, to understand the quality changes related to the 

processing instability from the quality changes due to the 

variation of the natural scene (less light due to the shooting hour, 

for example), we compare our target camera with other cameras 

of similar quality, expecting the quality of their images to 

correlate to our target camera across shooting sessions if they are 

all stable. As an example of this, two devices were shot in 5 

different shooting sessions. Our BP CNN model was used on 

every image, and the mapping function was used to transform the 

JOD inference into a score. Scores were aggregated by doing an 

average over every relevant scene (same lighting condition and  

same scene use case, in this case, Portrait/non-portrait). Figure 6 

shows an example of the Outdoor Portrait Bright preservation 

score. 

Two things can be concluded from the graph:  

• Scores are dependent of shooting session, which 

confirms the need of reference devices. 

• Scores of different devices are correlated over 

different shooting sessions. 

Figure 7 shows some of the scenes used to compute those 

scores for device A on shooting sessions 2 and 5. The shooting 

session 2 was effectively harder for device A, as the sky is 

strongly clipped in that session, which matches the conclusion 

from the graph. 

A similar study done for the DR model can be found in 

Appendix C. 

Conclusion 

This paper introduces two models that can evaluate the 

Brights Preservation and Darks Recovery of 25 scenes each. To 

do so, over 5000 images were annotated by 20 annotators on a 

pairwise comparison annotation campaign. During the 

campaign, an active sampling algorithm was used to optimize the 

comparisons. This dataset was used for training two multitask 

CNNs that obtained performing results when evaluated on a 

device-split testing set (cameras that were on the training set 

were not present in the testing set). Moreover, the provided JOD 

scores were converted to fix-range scores that make them 

comparable across scenes.  

The proposed models are shown to correctly predict the 

bright preservation (BP) and dark recovery (DR) attributes. They 

also serve to identify the difficulty of the shooting session on 

which the pictures were captured, which can potentially save a 

lot of resources when comparing different shooting sessions, and 

reduce the bias introduced by instabilities related to the shooting 

conditions. 

Figure 5 - Example of repeatability tests performed with the Dark 

Recovery model. Images in the same row were taken with the same 

camera in different shooting sessions See text for more details.  

 

Figure 6 - Brights preservation Outdoor Portraits score of two 
devices over different shooting sessions. 

Figure 7 - Example of scenes of Device A over shooting sessions 2 
and 5 
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Appendix A - Implementation details 

The training was done using a 32Gb Nvidia V100, using a 
batch size of 20. Each input image was resized to 600x600, using 
LANCSOS interpolation. Adam optimizer was employed with 
an initial learning rate of 1e-4 and a weight decay of 5e-4. To 
adjust the learning rate during training, a scheduler was 
implemented with a gamma of 0.9 and a step size of 10. Early 
stopping was activated by monitoring the validation SROCC. 
 

The loss is a weighted average of the Huber loss for the 
regression and Cross-entropy for the classification, ensuring 
proficiency in both tasks. The weights were chosen empirically, 
and the weights that gave better results are shown in Table 2. 

 
 

 REGRESSION 

LOSS WEIGHT 

CLASSIFICATION 

LOSS WEIGHT 

BP 0.9 0.1 

DR 0.8 0.2 

Table 2 - Different loss weights for each model 

http://doi.acm.org/10.1145/1360612.1360668
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691
https://arxiv.org/abs/2004.05691
https://ece.uwaterloo.ca/~hyeganeh/
https://ece.uwaterloo.ca/~z70wang/
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Appendix B – Dataset split 

To perform the split, the following constraints were 

considered: 

• Split per device: all the images taken by one device, or 

similar devices (same brand and same camera 

hardware) belong to one set no matter the scene. That 

is to say, we cannot find an image taken with the same 

device in the train and the test set. 

• Split per quality: all sets should have a similar JOD 

distribution for each scene. 

Splitting the dataset can be modeled as an optimization 

problem: we are trying to maximize the similarity of the 

distribution of the 3 datasets to the complete dataset, for every 

scene, given the device constraints described above. All the 

constraints should be taken into account at the same time, as we 

want a single dataset split in the end and not a split per constraint. 

To estimate the similarities between the dataset distributions we 

used the Earth’s mover distance, also known as Wasserstein 

metric [16].  

The complete dataset represented 25 scenes for BP and 25 

for DR, coming from 148 different devices which were 

categorized into 83 device categories. Those categories were 

randomly sampled and put into one of the 3 sets, and then the 

chosen metric was computed. This experiment was repeated 

100000 times, and the experiment with the smaller Wasserstein 

metric was chosen as our dataset split. An example of the 

distribution of a scene can be seen in Figure 8.  

Appendix C - Comparison of different device 
shooting sessions for Darks Recovery 

 

As for the study performed on Brights Preservation, 2 

devices were shot on 5 different shooting sessions. The scores 

for Darks Recovery can be found in Figure 9.  This time, we can 

see that the score correlation was not as evident as in the previous 

case. Figure 10 shows one of the scenes used to compute the 

score, for devices A and B for both the shooting sessions 1 and 

3. We can clearly see that device A severely underexposed the 

scene on shooting session 1, which explains the big dip in the 

score for that device and that shooting session. This points then 

to the fact that different score tendencies for devices over 

different shooting plans can be explained by the device’s 

unstable pipelines. 

 

 

Figure 10 - Example of scenes of Device A and B over shooting 
sessions 1 and 3 

Figure 9 - Darks Recovery Lowlight Portraits score of two 
devices over different shooting sessions. 

Figure 8 - Example of JOD histogram for the 4 datasets for a given 
scene: overall, train, validation, and test 


